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Abstract

This research centres on the development of a high-precision dart-launching system for the NUS
Calibur Robotics team’s participation in the RoboMaster University Championship (RMUC).
The project aims to design a system capable of accurately launching darts to hit designated
targets within the competition's rigorous specifications. Key objectives include creating a
flywheel-based launcher, designing both passive and active dart prototypes, integrating robust
electrical systems for control and automation, and implementing computer vision for real-time
target tracking and trajectory adjustment.

The flywheel mechanism was selected for its reliability and consistency, paired with a
revolver-style reloading system for efficient and compact dart handling. Passive darts emphasise
aerodynamic stability and modularity, while active darts incorporate servo-controlled fins for
precise directional adjustments. Innovations in design and testing include vibration analysis to
enhance stability, modular components for iterative prototyping, and an efficient electrical
system using vibration sensors and stepper motors.

Extensive testing ensured the system met RMUC's requirements for accuracy, range, and
operational consistency. The computer vision system, implemented on a Raspberry Pi Zero 2W
with an IMX219 camera, successfully tracks targets using green light detection algorithms. This
integration enables real-time guidance adjustments to improve accuracy and reliability under
competition conditions.

To summarise, this project contributes to the advancement of robotics by demonstrating the
integration of mechanical, electrical, and computer vision systems. It provides valuable insights
into achieving precision in dynamic environments, offering a scalable approach to solving
similar engineering challenges. The findings underscore the potential of modular and data-driven
design for optimising robotic performance. Future improvements could include stronger
materials for dart components, advanced aerodynamic modelling, and refined vision algorithms
for dynamic target tracking.
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Chapter 1 | Introduction

1.1 Project Scope

This research project focuses on developing a reliable dart-launching system for NUS Calibur
Robotics’ entry in the RoboMaster University Championship (RMUC). The scope is to research
and develop:

● Dart Launcher: Responsible for loading and propelling the darts over a minimum
distance of 5 metres.

● Dart: Equipped with its own vision system to navigate and strike a dart detection
module.

● Electrical System: Integrated features to enable the dart launcher to operate smoothly
within specifications and according to the designed mechanism.

● Computer Vision: Implement functionality for the dart to track the dart detection module
and control the servo motors accordingly.

Key research and engineering areas include mechanical design for the launcher, dart design (both
passive and active variants), electrical system integration, and machine vision for trajectory
monitoring. The development process encompasses concept generation, feasibility assessment,
prototyping, and iterative refinement, all while adhering to RMUC technical specifications.
Extensive testing and analysis are conducted to optimise dart launch accuracy and consistency.

Specifically, The UREx group members will focus on various research areas and project scopes,
as shown in the table below:

Lim Ji Yong Electrical System and Vibration Testing

Lin Hong Yi Dart Designs

Teh Wei Sheng Dart Launcher Designs

Cai Jiali Computer Vision
Table 1.1a: Research Areas and Project Scope

Overall, the project entails building a dart-launching system, designing passive and active dart
prototypes, and implementing a machine vision system for real-time trajectory control and
enhanced accuracy.
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1.2 Project Objectives

1. Dart Launcher
a. Design and develop a dart launcher capable of firing four darts continuously

within a 30-second timeframe.
b. Implement mechanisms for automated dart reloading to streamline the launch

process and improve efficiency.
c. Ensure the dart launcher is compatible with both passive and active darts through

thoughtful design and engineering considerations.
d. Achieve a launch range of 15–30 metres with precision sufficient to hit a 1 m²

target area.

2. Dart
a. Develop a lightweight and aerodynamically stable dart using optimal materials

and structural design.
b. Engineer the dart to be impact-resistant, capable of withstanding repeated

collisions without damage.

3. Electrical System
a. Integrate a sensor and detect vibrations detected during launching - using the

previous launcher prototype and the new UREx prototype - to compare values as
a measure of structural integrity and stability during launch.

b. Integrate an electrical system to control the elements of the operating mechanism
for the launcher that the team will be developing. This includes actuation and
feedback controls.

4. Computer Vision
a. Integrate a vision system into the dart for precise location tracking and navigation

toward the dart detection module.
b. Design a vision system that provides real-time feedback to the team regarding the

dart's landing location.
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Chapter 2 | Design Specifications

2.1 RoboMaster University Championship (RMUC) Requirements

The dart projectiles are launched by a dart launcher designed to achieve a range of over 15
metres and accurately target one of two towers in the RoboMaster University Championship
(RMUC) arena map. The requirements are as follows:

Dart Launcher:
● Pitch angle range: 25°–45°
● Maximum power supply capacity: 265 Wh
● Maximum supply voltage: 30 V
● Maximum weight: 25 kg
● Maximum expansion dimensions: 1000 mm x 600 mm x 1000 mm (L x W x H)
● Shall not use compressed air for propulsion

Dart:
● Maximum power supply: 4 Wh
● Maximum voltage: 8.4 V
● Maximum weight: 0.35 kg
● Maximum expansion dimensions: 250 mm x 250 mm x 150 mm (L x W x H)
● Thrust-to-weight ratio must remain less than one

Figure 2.1a: Annotated Arena Map (Top View)
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Figure 2.1b: Arena Map (Side View) with Trajectory Annotations

Figure 2.1c: Arena map with dimensions
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Chapter 3 | Literature Review

3.1 Competitive Analysis (RMUC)

An in-depth analysis was conducted on the top-performing teams in past RMUC competitions,
focusing on their successful dart systems. The findings were studied to inspire concept
generation for this project. This section presents the analysis and a comparative assessment of
different mechanisms.

Dart Launcher

Beijing
University of
Science and
Technology

Figure 3.1a: 6-Flywheels with Revolver-style Feeding Mechanism

Figure 3.1b: Pitch & Yaw System Figure 3.1c: Dart System Overview
(Beijing University of Science and Technology, 2021)

The design incorporates a six-flywheel launching system integrated with a revolver-style
feeding mechanism and a lever system to accurately position the dart within the launch
zone. The revolver rotates 90 degrees for each loading cycle, facilitating the transfer of
the dart into the flywheel region for launching. This assembly is affixed to an adjustable
pitch and yaw base, employing an unsupported ball screw system for precise pitch
adjustments and a "Lazy Susan" configuration for effective yaw control.
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Nanjing
University of

Aeronautics and
Astronautics

Figures 3.1d, 3.1e: Tensioning Mechanism Launcher
(Nanjing University of Aeronautics and Astronautics, 2022)

The dart system integrates a tensioning mechanism driven by dual motors for slide
retraction, a trigger mechanism operated by servo motors, and an anti-torque design to
ensure stability during firing. The impact damping is achieved through MGN9 sliders
paired with TPU components and nylon ropes, while the feeding mechanism employs a
vertical loading system with a parallelogram design for dart transfer, utilising fibreglass
and laminated wood for optimal structural integrity, along with a gravity-driven stop to
secure darts during movement.

South China
University of
Technology Figures 3.1f, 3.1g: Two-stage Acceleration Flywheels Launcher

(South China University of Technology, 2023)

The dart launcher employs a two-stage acceleration mechanism to enhance stability,
utilising a larger polyurethane flywheel for increased rotational inertia. Precision linear
guides minimise resistance during the launch process, while magnetic positioning
ensures accurate alignment for loading. A direct-push mechanism allows for the rapid
firing of two darts within eight seconds. The overall structure features an aluminium
frame with a yaw adjustment system that enables a ±9° range of motion and a
rectangular base that enhances stability through magnetic mounts securing the launcher
to the firing platform.
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Computer Vision

Nanjing
University of

Aeronautics and
Astronautics

This dart employs an OpenMV camera
positioned at the front, which tracks the
location of the detection module by
leveraging colour modules in the
OpenMV library. The distance between
the dart and the target is calculated, and
this data is used to guide the continuous
control of servo motors that adjust the
dart's wings accordingly.

The 2022 design had a detection range of
only three metres. However, with the same
OpenMV camera, an optimised algorithm
has extended this range to 16-20 metres in
2024 (RoboMaster赛务君, 2024).

Figure 3.3h: Vision system based on color (Nanjing
University of Aeronautics and Astronautics, 2022)

Northwestern
Polytechnical
University

This vision system utilises two cameras:
one mounted on the launcher and one
positioned at the front of the dart to track
the detection module’s position.
Additionally, a gyroscope is used to
determine the dart’s orientation. Based on
the calculated angle and distance between
the dart and the detection module, the
servo motors adjust the wings
dynamically, enabling precise control. Figure 3.3i: Vision system with gyroscope

(Northwestern Polytechnical University, 2024)

Table 3.1a: Analysis of Top-Performing Teams in RMUC
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3.2 Relevant Research on Dart Launcher

3.2.1 Launching Mechanism

Launching mechanism is a critical component in designing the dart launcher system that requires
precise and consistent propulsion. Three common mechanisms explored in the literature include
flywheel systems, tension springs, and elastic bands, each offering unique advantages and
challenges. Comparisons between the three mechanisms are presented in the table below:

Mechanism Advantages Challenges Performance
Considerations

Flywheel (Post,
1973)

-Mechanically
straightforward to
implement.

- Requires refinement on the
electrical and software sides,
including designing a PID control
system and precise angular speed
calibration.

- Sensitive to fluctuations in
speed.

- Produces consistent
outputs when rotational
speed is steady.

- Allows easy adjustment
of launch distance via
speed control.

Tension Spring
(Du et al., 2019)

- Reduces reliance
on electrical and
software systems.

- Potential for
greater launching
force and distance
compared to
flywheel
mechanisms.

- Mechanically complex and
challenging to implement.

- Higher failure risk due to
overloading or stress in the
spring.

- Difficult to control and estimate
launch distance accurately.

- Capable of achieving
greater force and distance.

- Less precision in
controlling launch
distance compared to
flywheels.

Elastic Band
(Connolly,
2024)

- Potential for a
high launching
force.

- Mechanically challenging due
to non-linear tension
characteristics.

- Prone to material fatigue and
performance degradation.

- Calibration is difficult due to
variability in tension and material
wear.

- Less consistent output
compared to flywheels.

- Less predictable and
reliable over time due to
wear and fatigue.

Table 3.2.1a: Comparison of Launching Mechanisms
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Flywheel (VEX Forum, 2015)

Flywheel-based launch mechanisms are commonly utilised in projectile systems due to their
mechanical simplicity and ability to produce consistent launch velocities when calibrated
effectively. The fundamental principles of projectile motion suggest that the optimal launch angle
for maximum range in the absence of air resistance is 45°, with range determined by the equation

where v is the initial velocity and θ is the launch angle. However, the presence of air drag
significantly influences the trajectory, particularly for lightweight projectiles with low ballistic
coefficients.

In flywheel mechanisms, energy is transferred to the projectile through rotational momentum,
with factors such as flywheel speed, surface uniformity, and friction at the contact points playing
critical roles in determining launch accuracy and range. Some notable findings regarding
flywheel mechanism include:

1. Interaction between the projectile and flywheels results in both linear acceleration and
potential spin.

2. Maintaining consistent rotational speeds and balanced flywheels can minimise energy
loss and improve trajectory predictability.

3. In ideal setups where both flywheels operate at equal speeds, the projectile exits with
minimal spin. Deviations such as unequal speeds or irregular wheel surfaces can
introduce spin and directional inaccuracy.

4. Lightweight projectiles such as foam or plastic balls experience significant air resistance
and may exhibit lift or drag variations due to spin.

Tension Spring (KB Delta, 2017)

A tension spring launching mechanism relies on the principles of energy storage and release,
governed by Hooke's Law, which states that the restoring force of a spring is proportional to its
displacement:

where k is the spring constant. As the spring is stretched, elastic potential energy is stored:

which is subsequently converted into kinetic energy to propel an object:
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The efficiency of this energy transfer depends on factors such as the spring's material,
environmental conditions, and the magnitude of applied stress. Proper selection of spring
parameters including the spring constant and material ensures optimal performance and safety.

Elastic Band (Tru Physics, 2023)

The elastic band launching mechanism operates similarly to the tension spring, utilising elastic
potential energy. When stretched, the elastic band stores potential energy which is then converted
into kinetic energy when released. However, compared to a tension spring, the elastic band's
material properties such as its stretchability and resilience play a more prominent role. The
efficiency of energy transfer in an elastic band mechanism also depends on factors like the
band’s thickness, stretch limits, and environmental conditions, ensuring optimal performance for
launching.

Besides, elastic bands are more prone to material fatigue and performance degradation over time.
With repeated use, the band may lose its elasticity, reducing the efficiency of energy transfer.
Calibration of the launcher can be challenging due to variability in the tension and wear of the
material. These factors make it difficult to maintain consistent performance as the material
properties change and stress accumulation may cause unpredictable results during launches.
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3.2.2 Reloading Mechanism

In addition to the launching mechanism, the dart reloading mechanism plays a critical role in the
system's performance, as it directly impacts the ability to launch four darts consecutively within
the competition's 30-second timeframe. The choice of mechanism must strike a balance between
mechanical complexity, reloading speed, and compatibility with the chosen launching system.
The comparisons between three reloading mechanisms are presented in the table below:

Mechanism Key Features Advantages Challenges Performance
Considerations

Top-loading -Involves multiple
mechanical and
electrical
components.

-Adds an additional
layer above the
launching area.

-Raises the centre
of gravity,
allowing
compatibility
with vertical
designs.

-Higher complexity
due to mechanical
and electrical
integration.

-Suitable for
tension spring
and rubber
band
mechanisms;
incompatible
with flywheel
mechanisms.

Revolver -Requires precise
alignment for
accurate dart
positioning.

-Efficient
reloading process.

-High precision
needed for alignment.

-Compatible only
with flywheel
mechanisms

Linear (Jang et
al., 2019)

-Simplest design
with a rack and
pinion track to hold
darts.

-Straightforward
implementation.

-Requires an
extended track for
holding darts.

-Compatible only
with flywheel
mechanisms.

Table 3.2.2a: Comparison of Reloading Mechanisms
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3.3 Relevant Research on Aerodynamics

Aerodynamics is very relevant to the design and process of Dart, both Passive and Active
systems require a robust, consistent, and reliable aerodynamic Dart for tuning and iteration.
Below, outlined are the Aerodynamic principles behind the Dart design.

In the context of a small projectile like Dart developed from RMUC, stability and flight path of a
small projectile, such as a dart, are tied to the interplay between its centre of gravity (CG), centre
of pressure (CP), and angle of attack (AoA). These parameters collectively determine the
aerodynamic behaviour, stability, and control characteristics of the dart during its trajectory.

Center of Gravity:

The CG is the effective point where the dart's mass is concentrated. Its position impacts stability
through the moment arm it creates relative to the CP. The pitching moment MMM about the CG
is given by:

where XCP and XCG are the longitudinal positions of the CP and CG, respectively, and L is the
aerodynamic lift force. For stability, XCP>XCG ensures a restoring moment when the projectile is
perturbed.

To quantify the effect of the CG's position, the static margin SM is defined as:

where c is the chord length. A larger SM improves stability but decreases manoeuvrability, while
a smaller SM may lead to instability (Caughey, 2011).

Centre of Pressure:

The Center of pressure is the reference point where aerodynamic forces act upon, the
Aerodynamic moment about the aerodynamic centre is given by:

Where CM,AC is the moment coefficient about the AC, Q is the dynamic pressure, S is the
reference area and c is the chord length. The Center of pressure location can be derived by
balancing moments:
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As CL, the coeff of lift increases with ant angle of attack, XCP moves forwards, this corresponds
with a destabilising effect on the projectile. This further shows us the importance of ensuring the
centre of pressure remains behind the CG of the projectile for optimal flight. (Nelson, R.C. ,
1998)

Dynamic Stability and Restoring Moments:

The dynamic stability of the dart is highly dependant on the damping characteristics, which
depends on the relationship between CG and CP, the restoring moment can be expressed as:
(Etkin, B., & Reid, L. D. ,1996)

Where leff is the effective lever arm between the CG and CP. The restoring moment becomes
oscillatory if the damping ratio ζ satisfies:

Where Cd is the damping coefficient, m is the mass and k is the stiffness derived from
aerodynamic forces.

Fin Design and its Aerodynamic properties

Fin design is crucial for stabilising small projectiles, ensuring aerodynamic stability, this is
because the fin design affects the centre of gravity and centre of pressure. The primary purpose
of the fins are to generate the restoring force that counters the disturbances during flight and
during the launch. As noted by Nakka (n.d.), the exact shape of the fins is less critical than their
span and ability to position the CP appropriately behind the CG. However, some planform
designs are better suited for specific conditions, offering trade-offs between aerodynamic
performance and durability.
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Trapezoidal and Clipped Delta Planforms

1. Trapezoidal Planform:

○ The trapezoidal fin has straight leading and trailing edges. It strikes a balance
between aerodynamic efficiency and durability.

○ One notable advantage is its structural resilience during landing. The trailing edge
is forward of the body tube's end, reducing the likelihood of damage upon impact
(Nakka, n.d.).

2. Clipped Delta Planform:

○ This design, which features a forward-swept trailing edge, combines lower drag
with ease of construction. However, its trailing edge’s proximity to the body tube
increases the risk of bending or damage(Nakka, n.d.).

3. Tapered Swept Planform:

○ The tapered swept fin is particularly well-suited for high-performance small
rockets due to its aerodynamic and stability benefits. It is essentially a
combination of the 2 with the added benefit of moving the CP even further back,
allowing for maximum stability.
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3.4 Relevant Research on Electrical Controls

3.4.1 Selection of MCU Board

Board ESP32 STM32 blue pill Arduino UNO

Processors 32-bit, Dual-core
Xtensa LX6

32-bit ARM Cortex
M3

8-bit ATmega328P

CPU Clock 80MHz - 240MHz 72MHz - 168 MHz 16 MHz

Timers 16-bit Prescaler
64-bit counters

4x 15-bit 1 x 8-bit,
2 x 16-bit

Memory 520 KB RAM and
448 KB ROM

20KB RAM 2 KB SRAM

Flash Size 4MB 64KB 32 KB (0.5 KB for
bootloader)

Peripherals 34 programmable
GPIOs, 12-bit SAR
ADC (up to 18
channels), 2× 8-bit
DACs, 10 touch
sensors, and multiple
communication
interfaces (SPI, I²S,
I²C, UART, CAN)

USB 2.0 OTG HS
and FS, CAN 2.0B,
SPI, I²S, I²C, USART,
UART, SDIO, timers,
watchdog timers,
temperature sensor,
ADCs, DACs,
GPIOs, DMA, RTC,
CRC engine, and
RNG engine.

ADC, UART, SPI,
I2C, PWM, GPIO

i//p Board Power
/alternative b.p.

5V USB, Micro-B
3.3V (V_IN)

5V USB Micro-B
2.0V-3.6V

5V USB power

Program Loading UART/USB,
Over-the-Air (OTA)
updates

Serial Wire Debug
(SWD)
ST-LINK/V2, UART

USB bootloader

Wireless Wi-Fi Trans Receiver
802b/g/m
Bluetooth 4.2 BLE

NA NA

Table 3.4a: Comparison of potential MCUs
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3.4.2 Vibrations

The existing dart launcher system developed was suspected to suffer from inconsistencies, due to
potentially high levels of vibration. If this hypothesis is correct, vibration indicators can be
instrumental in diagnosing the issue.

By accurately measuring vibrations and identifying the primary axis along which vibrations
occur, we can pinpoint the root cause of instability in the launcher, as well as verify if our new
launcher system is quantitatively better. This insight will help in refining the mechanical design
and ensuring more consistent and reliable performance. The team started with exploring different
vibration sensors and accelerometers to explore suitable sensor options for our use case, and
reviewed the working principles of both types of sensors below.

Feature Vibration Sensors Accelerometers

Measured
Quantity

Vibration/Displacement Acceleration

Sensitivity Moderate High

Frequency Range Specific frequencies Wide frequency range

Measurement
Principle

Piezoelectric/Resistive Capacitive/Piezoelectric

Output Signal Analog or Digital Analog or Digital

MCU Interfacing May provide simple digital output
or analog signal

Requires analog-to-digital
conversion or digital interface;
may need signal conditioning

Application Detecting machine faults,
equipment monitoring

General-purpose sensing (motion,
tilt, impact)

Typical Units Velocity/Displacement (mm/s, m/s²) g (acceleration due to gravity)

Integration
Complexity

Simpler, often single-axis Higher (often 3-axis)

Cost Can be much less expensive Generally more expensive

Table 3.4b: Comparison of (in General) Accelerometers against Vibration Sensors

3.4.2.1 Vibration sensors

Vibration sensors encompass a broader range of devices designed to measure different aspects of
vibration, such as acceleration, velocity, or displacement, but mostly referring to the latter two.
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Vibration sensors, also known as vibration transducers, are often used to measure the vibration of
machinery or structures. A common type is the piezoelectric vibration sensor, which operates
based on the piezoelectric effect: certain materials generate an electric charge when mechanically
stressed. In piezoelectric vibration sensors, mechanical vibrations cause stress on a piezoelectric
material (such as quartz or certain ceramics), producing an electrical charge proportional to the
force of the vibration. This charge is typically converted into a voltage signal through a charge
amplifier. The voltage signal represents the vibration's amplitude and frequency, which allows
for detailed analyses of the source of vibration.

Alternatively, some vibration sensors use microelectromechanical systems (MEMS) technology
similar to accelerometers but are optimised for vibration detection over specific frequency
ranges. These sensors can provide high-resolution measurements of vibration parameters and are
suitable for integration into electronic systems.

The output from vibration sensors can be analog or digital. Analog signals often require signal
conditioning before interfacing with an MCU, while digital sensors can communicate using
standard protocols.

A few potential vibration sensors for consideration are explored below:

Model Measurement
Range

Output
Type

Voltage
Range

Sensitivit
y

Interface Notable
Features

Sencera
801S

0 - 50g Digital 5 V N/A Digital
Output

Sensitivity
Adjustment

SW-420 Threshold-bas
ed

Digital
(Switch)

3.3 V –
5 V

N/A Digital
Output

Simple vibration
detection

Dytran
3035B

±500 g Analog 18 V –
30 V

10 mV/g Coaxial
Connector

Wide frequency
range

PCB
352C33

±50 g Analog 18 V –
30 V

100 mV/g Coaxial
Connector

High sensitivity,
industrial
applications

Table 3.4d: Comparison of Potential Vibration Sensors

3.4.2.2 Accelerometers

Accelerometers are electromechanical devices that measure acceleration forces. These forces
may be static, like the constant force of gravity, or dynamic, caused by moving or vibrating an
object. Modern accelerometers commonly use Micro-Electro-Mechanical Systems (MEMS)
technology, integrating microscopic mechanical structures onto silicon chips. The fundamental
working principle involves a proof mass suspended within the sensor. When acceleration occurs,
the proof mass experiences inertia, causing it to displace relative to the sensor housing. This
displacement alters an electrical property, such as capacitance, piezoresistive value, or the
piezoelectric effect, depending on the accelerometer type.
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● Capacitive Accelerometers: Measure changes in capacitance caused by the displacement
of the proof mass between capacitor plates. The variation in capacitance is proportional to
the acceleration. This method is widely used in MEMS accelerometers due to its
sensitivity and ease of integration.

● Piezoresistive Accelerometers: Utilise materials whose electrical resistance changes
under mechanical stress. The deformation of the proof mass under acceleration alters the
resistance, which is measured and converted into an acceleration value.

● Piezoelectric Accelerometers: Employ piezoelectric materials that generate an electric
charge when subjected to mechanical stress. However, they are generally not suitable for
measuring static acceleration (like gravity) because the charge dissipates over time.

The output signals from accelerometers can be analog voltages or digital data. Analog outputs
require analog-to-digital conversion when interfacing with a Microcontroller Unit (MCU), while
digital outputs can communicate via protocols like I²C or SPI.

A few potential accelerometers for consideration are explored below:

Model Axes Output
Type

Voltage Range Measurement
Range

Interface Notable
Features

ADXL335 3-axis Analog 1.8 V – 3.6 V ±3 g Analog
Output

Analog
Output

ADXL345 3-axis Digital 2.0 V – 3.6 V ±2/4/8/16 g I²C/SPI High
resolution
(13-bit), tap
detection

MMA7361 3-axis Analog 2.2 V – 3.6 V ±1.5/6 g Analog
Output

Selectable
sensitivity,
sleep mode

BMA220 3-axis Digital 1.62 V – 3.6 V ±2/4/8 g I²C Ultra-small
package, low
noise

Table 3.4c: Comparison of Potential Accelerometers
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3.5 Relevant Research on Computer Vision

Based on the project objectives, extensive research conducted on the selection of cameras and
boards, tracking algorithms with the implementation of a real-time system.

Selection of camera
Considering the context of the RoboMaster Competition and the requirement of real-time
processing, the camera is expected to meet the requirements below:

● High resolution to detect the target at 15-30 metres away
● Fast frame rate for real-time tracking
● Small size to fit within the dart’s constraints
● Software development kit (SDK) or application programming interface (API) availability

for easier integration with software

Detailed comparison of six small cameras satisfying the requirements is outlined in the Table
3.2a:

Camera Resolution
(pixels)

Frame
Rate (FPS)

Size
(mm)

Connectivity Pros Cons

IMX219
Camera 160
FOV

3280 × 2464 30 25 × 24 CSI - High
resolution
- Widely
supported
- Large field of
view

- Moderate
frame rate for
fast-moving
objects

Raspberry
Pi Camera
5MP

2592 × 1944 Up to 60 25 × 24 CSI - Good balance
of resolution
and frame rate
- Widely
supported

- Requires
Raspberry Pi
- Fixed lens

Raspberry
Pi Camera
Module V2

3280 × 2464 30 25 × 24 CSI - High
resolution
- Widely
supported

- Requires
Raspberry Pi
- Moderate
frame rate

Pixy2 640 × 400 Up to 60 50 × 40 USB, UART,
SPI, I2C

- Advanced
tracking
algorithm
based on
colour
- Built-in
image
processing

- Moderate
resolution
- Large size
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OpenMV
H7

640x480 Up to 150 45 × 36
× 32

USB, UART,
SPI, I2C

- Built-in
machine vision
capabilities
- Easy
programming
- Fast frame
rate

- Moderate
resolution
- Large size

OpenMV
H7 Plus

1920 × 1080 Up to 60 36 × 36 USB, UART,
I2C, SPI

- Built-in
machine vision
capabilities
- Easy
programming

- Large size

Table 3.5a: Comparison of potential cameras

Selection of boards
With relevant research on the selection of boards, the requirements of boards is summarised as
below:

● Camera interface compatibility
● Small size to fit dart dimensions
● Sufficient processing power for CV algorithm
● Supported programming languages and libraries

Detailed comparison of four boards meeting the requirements is outlined in the Table 3.2a:

Board Interface Size (mm) Pros Cons

Raspberry Pi
Zero 2W

CSI, USB 65 x 30 - Compact
- Raspberry Pi

ecosystem
- Good camera

interface
compatibility

Lower processing power

Raspberry Pi
3B+

CSI, USB 85 x 56 - High performance
- Raspberry Pi

ecosystem
- Good camera

interface
compatibility

Larger size

Raspberry Pi
3A+

CSI, USB 65 x 56.5 - Balanced size and
performance

- Raspberry Pi
ecosystem

Slightly larger than Zero
2W
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- Good camera
interface
compatibility

Arduino Nano
33 BLE

I2C, SPI 45 x 18 - Compact
- Arduino

compatibility

- Limited
processing power

- Limited interface

Table 3.5b: Comparison of potential boards

Tracking algorithm
A real-time system that needs to deal with live video streams requires a high performance
tracking algorithm. To design a tracking algorithm, the first step is to decide the description of
the object to track such as a shape, texture and colour (Yang et al., 2011). Given there is a green
guiding light on the detection module in this project’s context, the green light would be
considered as the most straightforward approach to locate the target. Therefore, the main focus of
the research on tracking algorithms was colour tracking.

Colour tracking is a conventional tracking process for systems with high-moving objects like
dart, because colour information represents the global feature of objects, which are relatively
independent of the viewing angle, translation, and rotation of the objects (Yang et al., 2011).
There are two main colour models to represent colour information - RGB colour model and HSV
colour model (Gajbhiye & Gundewar, 2015) as shown in Figure 3.2a.

.

Figure 3.5a: Colour models (Gajbhiye & Gundewar, 2015)

RGB colour model is denoted by the volume of red, green and blue that exists in the colour
space. RGB information is represented in three 0-255 numbers, each present one primary colour.
For example, the RGB representation of purely green is (0, 255, 0). By comparison, HSV colour
model uses the volume of hue, saturation and value exists in colour space to denote, where hue
stands for the property and type of colour range from 0 to 360, saturation stands for purity of
colour range from 0 to 100, and value stands for brightness of colour range from 0 to 255. The
conversion between RGB and HSV can be implemented easily by some equations (Gajbhiye &
Gundewar, 2015).
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Thresholding is a widely used image-processing operation that utilises colour information to
segment an image into two or more parts - target objects, known as foreground, and the rest
objects, known as background (Goh et al., 2017). Predefined colour boundaries are established
for the target objects, enabling every pixel in the image to be analysed and classified according to
these thresholds, which may include specific colour or grayscale values. This segmentation
process divides the image into distinct segments, allowing for effective identification and
localization of the foreground. Morphological operation is another basic image-processing
operation which is usually applied after thresholding. It is used to adjust object structure by
either thinning (erosion) or thickening (dilation) of the object. Noise can be removed and holes
can be filled by this operation (Gajbhiye & Gundewar, 2015).

A common technique to do foreground segmentation named background subtraction is an
example of effective combination of thresholding and morphological operation as shown in
figure 3.2b. In this method, the thresholding can be easily achieved by comparing the current
image with a reference background image. The pixels where the referenced image does not
match are considered as the targeted object.

Figure 3.5b: Detection Using Background Subtraction Modeling (Goh et al., 2017)

In real-time object tracking, several challenges may arise due to factors such as significant partial
or full occlusion, camera motion, variations in object and environment appearance, shadows, and
the presence of multiple objects with similar colours. To address these complexities, several
potential solutions are identified and summarised:

● Handling Occlusion: One approach is to use a particle filter method with colour features,
which tracks the object’s colour distribution over successive frames, even if the object is
not fully visible. The grey world assumption combined with particle filtering using
easy-MOSSE or CSR-DCF can further help by assuming that the average colour of an
image scene is grey, thus improving robustness under varying lighting conditions (Liu et
al., 2020).

● Improving precision with discriminative methods: Discriminative methods which
incorporate inputs like motion models, feature extraction, and observation models, allow
for more complex decision-making processes. These methods adjust their model updates
based on observed changes, leading to more precise outputs and reducing false positives
in tracking (Liu et al., 2021). Although this method is robust, the processing power
needed might be high.
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● Handling multiple object detection: One efficient approach is the optical flow method.
This method uses the motion vectors of the moving object across time to help locate the
target object. If the targeted object has been “remembered”, there will be its presence in
the next frame somewhere with almost the same colour information (Jansari et al., 2013).
The detailed procedure is outlined in the flowchart below (Figure 3.2b).

Figure 3.5c: Flowchart of colour tracking algorithm using optical flow method
(Jansari et al., 2013)
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3.6 Review of Existing Dart System

Dart Launcher

The initial iteration of the dart launcher developed by the NUS Calibur Robotics dart team has
exhibited significant limitations in achieving consistent flight paths for successive darts,
primarily attributed to structural instability and inconsistencies in the flywheels during the
launching process.

Figures 3.6a, 3.6b: First Iteration of Dart launcher

Figure 3.6c: Small Gap of Old Launcher Figure 3.6d: Damaged Flywheel Rubber
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Figure 3.6e: Inaccurate Launch due to Figure 3.6f: Imbalance Base
inconsistent Flywheels Angular Speed

(NUS Robomaster Archives)

Comprehensive testing and analysis have revealed several key factors contributing to the
suboptimal performance of the dart launcher:

● The opening gap through which the dart must pass is insufficiently sized and does not
accommodate the fins of the dart, leading to collisions during launch (see Figure 3.6c).

● The rubber surface of the flywheel has sustained damage during testing, resulting in an
uneven surface characterised by dents and imperfections (see Figure 3.6d).

● The angular speeds of the four flywheels are not properly calibrated, causing variations in
rotational speeds and resulting in inconsistent launch dynamics between the left and right
sides of the dart (see Figure 3.6e).

● The base of the dart launcher fails to maintain a flat orientation on the surface due to
protruding bolts, which can compromise stability (see Figure 3.6f).

These deficiencies will be addressed in the project to enhance the accuracy and consistency of
the dart system in subsequent iterations.

Dart

The initial vision system for the NUS Calibur Robotics dart team was a prototype developed
using the OpenMV H7 Camera and OpenMV board, designed for colour tracking

Thorough testing and analysis, several critical limitations of this prototype became evident:

● The OpenMV H7 Camera’s resolution proved insufficient for the team’s requirements.
Specifically, the camera was unable to accurately detect targets beyond a distance of 2
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metres, far short of the team’s goal of enabling the dart to aim at targets 15–30 metres
away.

● The OpenMV H7 Camera was too large (45 × 36 mm) to integrate within the dimensions
of the existing dart design (26 × 26 mm).

● There were no actuators to adjust the dart's direction, making the vision system
incomplete.
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Chapter 4 | Engineering Design Process

4.1 Concept Generation and Selection

Based on the literature review, several potential concepts for the dart launcher design, dart
design, electrical system, and computer vision system have been identified and analysed. This
section performs a comparison between each concept and provides the rationale behind the final
selection for each mechanism that the team will adopt moving forward.

4.1.1 Dart Launcher

Launching Mechanism:

Mechanism Difficulty Consistency Cost Risk of
failure

System
lifespan

Experience

Flywheel Medium 8/10 High Low Long Yes

Tension
Spring

Hard 5/10 Medium Medium Short No

Elastic Band Hard 6/10 Low Medium Short No

Table 4.1.1a: Evaluation of Launching Mechanism Choices

Final Selection: Flywheel Mechanism

Justification: Flywheel mechanism offers the highest reliability and greater margin for
adjustments within the project scope. Evidence from testing by other university teams indicates
that the flywheel mechanism delivers more consistent launch performance and avoids issues
related to material fatigue and the non-linear tension characteristics inherent in spring and rubber
band mechanisms. Additionally, the team possesses prior experience working with flywheel
systems, as the previous iteration of the dart launcher also employed this mechanism. This
familiarity provides the team with a deeper understanding of the design, operation, and
optimization of flywheel-based systems.

Feeding Mechanism:

Mechanism Difficulty Consistency Cost Risk of
failure

Efficiency Space
Consumption

Top-loading Hard 7/10 High High Medium Large

Revolver Hard 6/10 Medium Medium High Medium

Linear Easy 9/10 Medium Low Low Large
Table 4.1.1b: Evaluation of Feeding Mechanism Choices
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Final Selection: Revolver Feeding Mechanism

Justification: The revolver feeding mechanism provides an efficient reloading process without
the need for an extended track. While it demands high precision for dart alignment, this
challenge can be mitigated through the use of a stepper motor. Additionally, the revolver feeding
mechanism is compatible with the flywheel launching system, which has been selected as the
preferred mechanism for this project. Lastly, the revolver feeding mechanism requires the least
amount of space among the three options, making it the most compact choice for the dart
launcher design.

4.1.2 Dart

Mechanical Design of Dart:

The 2 main considerations of the Dart Design are to firstly create an Aerodynamically Viable
Dart design, Secondly, the design should be modular to allow for easy iteration of the design for
future prototyping (eg. different fin configurations, Active vs. Passive Dart systems, different
types of interference fit for flywheels).

The following subsections will detail the main factors that have led to the current design.

Aerodynamic Considerations:

Based off initial tests of the previous prototype, it was noted that the stability and hence
predictability of the flight path was largely based off the initial trajectory (potential rotational
forces imparted onto the dart by the old flywheels and untuned motors) as well as the CG of the
dart.

To combat potential instability, we concluded we have to optimise the pitching, yawing and
rolling coefficients. These coefficients directly correspond to the magnitude of the restoring force
when perturbed in pitch or yaw; extreme values would correspond to either over or under
corrections to such disturbances.

To iteratively test these parameters, we have developed a modular dart whereby the aerodynamic
surfaces on the body as well as the fins of the dart can be swapped out for different geometries
and their respective aerodynamic properties.

It was also postulated that a CG at the front of the Dart is optimal for stable flight. By placing the
CG further to the front, the distance between the centre of pressure (COP) and the centre of
gravity. During the flight path, there is a change in the angle of attack in the parabolic flight, the
restoring moment generated by the fins at the back of the Dart (COP); By moving the CG
forward, we can hence strengthen the stabilising effect. Additionally by shifting the CG
forwards, we also reduce the Dart’s sensitivity towards angular disturbances by increasing the
moment of inertia.
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The effect of CG can be studied by varying the CG iteratively using taped on masses in the
internal structure of the Dart, allowing us to iteratively find the optimal placement of CG.

It is also notable that during the initial design process, we attempted to develop a model based on
aerodynamic simulations on Matlab. However, we were quick to face difficulty in getting the
equations to converge. This was often due to the unique angle of attack of the Dart which does
not resemble a conventional “plane” which has much larger aerodynamic and control surfaces,
rendering most assumptions invalid.

Final Aerodynamic Property of the Dart:

To provide the Dart with sufficient restoring focus without introducing instability together with
providing sufficiently low drag we concluded with these final design choices.

● Front heavy Dart, (meaning most of the 3d Print mass has to be at the front)
● No camber on the fins resulting in no pressure difference between top and bottom

surfaces of the fins
● There is a net 0 lift provided by Fins
● Swept back trapezoidal Fin design

Production and Assembly Considerations:

Material Considerations:
Previous iterations were mostly a single construction printed out of TPU for its high flexibility
and strength, however its relatively higher density 1.2g cm^-3 made initial prototypes relatively
heavy for the size.

● High Density of 1.2g cm^-3, similar to PLA
● High flexibility and strength
● Intricate parts are harder to print due to stringing of 3d print

Similar to other teams, we experimented using PLA Aero with a density of 0.54g cm^-3, which
allowed us to drastically decrease the weight of the body, allowing us to vary CG to a greater
degree as well as dedicate more weight to the internal components which are even more
significant in the case of an active dart.

Strength Requirements:
The Darts are made to be Disposable after a few launches, we expect parts like the fins to
account for majority of the breaks due to their relatively thinner profile, and high likelihood of
bending during impacts.
Material selection wise, this aligns with the choice of PLA Aero, with it being less brittle than
PLA but less flexible than TPU.

To increase strength of the 3d print, print orientation was considered, with the vertical print
orientation for the body being much stronger for the “head first” collisions that come with head
heavy dart in a parabolic path. Similarly, the fins are printed flat.
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3D Printing Specifics:
It is notable that PLA Aero has dynamic densities based off print temperature, this is due to the
foaming property of PLA Aero

For the prototypes, we are printing at a density of 0.62, trying to strike a balance between
strength, density and ease of printing.

Assembly Considerations:
● Assembly has to work for both Active and Passive designs
● Easy access to electronics
● Ability to Vary CG easily without a “redesign”
● Easily replace broken parts
● Easy access to charging

Future Considerations:
● Potentially consider stronger materials for the fins such as carbon fibre (I think one of the

team’s active dart has carbon fibre fins)
● Making assembly of the dart easier and require less pieces / screws, achieving less points

of failure

Active Dart Construction Considerations:

Methods Considered to Steer the Dart:
● Using Roll to affect the trajectory / steer the dart

○ Potentially control using 1 servo but also require a more complex internal design
● Using the back of the fins as a “rudder”

○ 4 independent servos, 1 per fin
○ 4 servos, with 2 servos “coupled” using software
○ 2 independent servos, coupling the fin into “one long fin” mechanically

It was decided to use 2 independent servos to save on weight and allow for a more compact
construction. This is in line with the prototypes seen from the Chinese teams, which controlled
their fins with external servo rods.
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4.1.3 Electrical System

In building a new dart launcher, we were aware that we had to integrate a rotary motor and two
servo motors.

● A rotary motor is required to spin the revolver mechanism structure by 90 degrees
accurately.

● A servo motor is required to push a dart out, via a dart rail, from a dart holder to the
launching platform where the dart gets sent flying by the flywheels’ propulsion.

● Another servo to implement a final alignment and locking mechanism of the revolver
mechanism frame in every 90-degree rotation

The Robomasters Development Board C (Dev-C), which runs on STM32f407IGH6, is generally
used by Robomaster students to operate robots. Likewise, in the old dart launcher design, the
flywheels have been integrated with the Dev-C board to propel the darts. Hence, the initial plan
for electrical controls of the entire new launcher design was to integrate the above components
with the Dev-C as well, along with a vibration sensing component.

4.1.3.1 Vibration Testing

Accelerometer ADXL335:

At the beginning, the team acquired an ADXL335 accelerometer from NUS Electronics
Workshop (E2A #02-02). It has a resonant frequency of 5500Hz. The team noted the difference
in frequency bandwidth for the three axes of operation but proceeded to integrate it since the
mounting orientation can be changed afterward if necessary.

Preliminary testing of the ADXL335 using Arduino UNO shows that the three axes of the
ADXL335 accelerometer change in value when shaken lightly (approximately 3Hz, 1 cm
displacement). In Figure 4.2a - 4.1c below, the serial monitor graphs show the fluctuating
accelerometer values against time.

Figure 4.1.3a: x-axis vibration Figure 4.1.3b: y-axis vibration Figure 4.1.3c: z-axis vibration
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Although the accelerometer works, the team faced difficulty integrating it with the Dev-C.

The ADXL335 only outputs analog data - but the customizable IO ports of Dev-C are not
compatible with analog. A digital-to-analog converter (ADC) is required to process the data
output from the accelerometer because Dev-C can only read digital data.

More specifically, the team could not initialise any ADC peripherals from STM32Cube IDE
because it was used by internal peripherals or functions, such as timers or communication
interfaces. None of the user-accessible pins were able to access an ADC. [ref: RoboMaster
Development Board Type C Schematic Diagram]

Vibration Sensor: Cytron 801S (Final decision)

Given that the ADXL335 accelerometer cannot output digital signals to integrate with the
STM32 Dev-C board, the team switched to using the Cytron 801S vibration sensor which
outputs digital signal. It is also easier to integrate with only 3 pins.

Figure 4.1.3d: 801S Vibration Sensor Pinout

Two high-precision Cytron 801S vibration sensors, that output digital data, were ordered to be
compatible with the Dev-C. More specific characteristics for this vibration sensor has been
discussed in the Literature Review Section.

It works by changing its resistance drastically when subjected to vibrations. The sensor is
internally connected to a voltage divider circuit to get a voltage output, similar to many
resistance-varying devices.
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Figure 4.2.3e: Vibration Sensor Mount

The team noticed that the vibration sensor’s breakout board had conductive terminals protruding
from the bottom of the breakout board, and would short circuit if mounted directly onto the dart
launcher frame. Three iterations of vibration sensor mounts were designed and 3D-printed in
PLA to act as a compact insulator. The on-board M2 screw hole allows the 801S to be screwed
tightly onto the mount above; the mount can be screwed onto the dart launcher frame’s M5 screw
holes. In the end, epoxy was used instead to replace the screws to ensure that the mounting was
as secure as possible so that in the long run (screws loosen over time especially with vibrations).
The team then used this model to test for vibrations, and the results will be covered in a later
section.

4.1.3.2 Rotary Motor for Revolver Mechanism

Brushless DC Gear Motor: DJI M3508 P19

Initially assuming that the team would develop the launcher entirely on Dev-C firmware, the
team planned to use the existing RoboMaster motor controlled via Controller Area Network
(CAN) communication. CAN offers robust, noise-resistant, and error-checked data transmission
and is the communication protocol used for controlling the M3508 motor in RoboMaster robots.

The M3508 motor is attached to a gearbox with a gear reduction ratio of 3591/187 [Page 18 of
DJI M3508 datasheet]. This ratio can be read as a fraction representing the factor to which the
speed of the BLDC is reduced, and also the factor by which the torque of the motor is increased.

Using CAN protocol introduced some difficulty in implementing the gear motor. While CAN
communication is robust and suitable for industrial applications, it introduced a steep learning
curve for those unfamiliar with it. In addition, BLDC motors are inherently designed for
continuous rotation and are excellent for applications requiring high speed and torque. They are
not ideal for applications requiring precisely fixed positional control without additional
components. Achieving exact angular movements, such as rotating exactly 90 degrees, is more
complex with BLDC motors because it lacks inherent position-holding capabilities and requires
more sophisticated closed-loop control systems to achieve precise positioning.

Stepper Motor: NEMA 23 (57BYG250B-8)

The team switched to stepper motors which are designed for precise positional control. Moving
in discrete steps that allow for exact positioning without the need for complex feedback systems.
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They can rotate a specific angle per input pulse, making them highly suitable for applications
requiring accurate and repeatable movements and lowers the barrier to achieving reliable motor
control. The team expected that implementing stepper motor control would be more intuitive and
better aligned with their expertise.

This specific stepper motor model has the following characteristics:

● 200 steps per revolution × 1.8-degree step angle

● holding torque of 19 kg-cm

● 12kg torque (to rotate revolver)

Despite referencing datasheets for this stepper motor driver model (TB6600) and tutorials on
similar stepper motor drivers, there was still some difficulty in getting the stepper motor to move
as intended. Due to incomplete and unclear documentation on online datasheets, the team
decided to test out the motor driver’s operational settings in a hands-on manner. The conclusions
are summarised below:

The STEPPER DRIVER has the following pins and their purposes:

Terminal on
Driver TB6600 Function and Connection

ENA- Enable pin (negative)

ENA+ Enable pin (positive)

DIR- Direction pin (negative) (GND)

DIR+ Direction pin (positive) (DC 5V)

PUL- Pulse Pin (negative) (GND)

PUL+ PWM Pulse Pin (positive)

B- Connection to one coil of the stepper motor (negative)

B+ Connection to one coil of the stepper motor (positive)

A- Connection to the other coil of the stepper motor (negative)

A+ Connection to the other coil of the stepper motor (positive)

GND Ground

Vcc Connect to the power supply (rated 3.36V, but we are connecting it to the
22.8V Robomasters TB48S battery)

Table 4.1.3a: Conclusion of Wiring DM6600 Terminals
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Key highlights from reading and testing:

● Confirms that DIR- and PUL- are connected to the common ground (GND) of the
Arduino UNO.

● How to use the enable pins (ENA+/-):

○ the motor is disallowed to move (even if PWM is inputted) when:

■ ENA- to GND, and
■ ENA+ to 5V

○ the motor is allowed to move when:

■ ENA- to 5V, and
■ ENA+ to GND;

or

■ ENA- to 5V, and
■ ENA+ to 5V;

or

■ ENA- to GND, and
■ ENA+ to GND;

On STM32Cube IDE, the team wrote a code to spin the M3508 motor in Dev-C. The team
effectively programmed a manual switching between HI (5V) and LOW (0V) to create PWM
signal while keeping it non-blocking. Non-blocking code ensures that all the interrupts required
by the flywheels-controlling PID functions can run.

However, in testing, the stepper motor fails to move 90 degrees with every rotation, and
consistently moves approximately 75 degrees. This is despite receiving the correct number of
steps required. The team had checked the PWM signal using an oscilloscope as shown below.

Figure 4.1.3f: Oscilloscope showing PWM signal of 500.1 Hz, in an attempt to move it by 100 steps
with a PWM frequency of 500 Hz. (Motor driver settings: 400 steps per revolution.)
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The team tried other methods in attempt to move it by 90 degrees, such as toggling the enable
pins such that power to the stepper motor is cut off for a set duration - but the angle fails to be
precise and consistent. The team suspect a time lag in the power cuts, causing the motor to have
some residue power to spin more than 90 degrees for a small fraction of time after the power can
be cut.

The team also tried to reprogramme the PWM signal to be generated only for alternative
multiples of 90 increments in step_count, and generate a DC for the duration during which the
motor is meant to be static. This achieves better accuracy, but it only works when
StepperMotor_OutputPulse(100), and is still not perfect. Deviation is seen after multiple
revolutions are made.

Decision Point:

The team ultimately decided to switch to using an Arduino UNO instead of using Dev-C.

The following lists a few useful implications of using Arduino:

● The Arduino will be able to control electronics without interfering with the flywheel
functions in STM32 since they are two distinct systems now. Therefore there is no more
need to ensure the code is non-blocking.

● The implementation of all components are simplified. There is no need for configurations
like setting up clock sources, timers, and there is also a wider community utilising the
UNO board with our intended peripherals. This resource is helpful in debugging and for
referencing.

● Servo motors will be easier to programme by accessing the in-built library via <servo.h>.

For easy sub-system integration testing, the team added a push button. The team obtained a
four-pin push button but it was unlabelled. The team took it apart to explore the internal
mechanism and saw the mechanical configuration. By pressing the button, two pins each pin on
two halves of the button connect together. Hence, by wiring any two opposite pins, a press of the
button connects the two pins, allowing current to flow.

The resultant integrated system is presented in the next section as our final prototype.
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4.1.4 Computer Vision

Selection of Boards:

Board Ecosystem Camera
Compatibility

Processing
Power

Size

Raspberry Pi Zero
2W

Easy to use with
Raspberry Pi
ecosystem

High (almost all
cameras)

High Second smallest

Raspberry Pi 3B+ Easy to use with
Raspberry Pi
ecosystem

High (almost all
cameras)

Higher than
Zero 2W

Larger

Raspberry Pi 3A+ Easy to use with
Raspberry Pi
ecosystem

High (almost all
cameras)

Higher than
Zero 2W

Larger

Arduino Nano 33
BLE

Easy to use with
many open
sources

Limited Lowest Smallest

Table 4.1.4a: Evaluation of board choices

Final Selection: Raspberry Pi Zero 2W

Justification: Raspberry Pi Zero 2W takes the advantages of Raspberry Pi ecosystem and wide
camera interface availability. It also balances well between the size and performance - the size is
small and it has been proved to perform well with AI models like computer vision algorithms.
Even if it failed to provide enough power, there is a potential solution - compile the code and
generate a lower-level code executable file on laptop; save the file on the board to direct use
without compile. This will reduce the power consumption (Gajbhiye & Gundewar, 2015)

Selection of Camera:

Camera Resolution Frame
Rate

Field of
View

Compatibility Built-in
Processing

Size

IMX219 Cam
160 FOV

Highest Low 160°
(Largest)

Good with
RPi Zero 2W

No Standard

Raspberry Pi
Camera 5MP

Medium Medium Standard Good with
RPi Zero 2W

No Standard
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Raspberry Pi
Camera
Module V2

Highest Low Standard Good with
RPi Zero 2W

No Standard

Pixy2 Medium Medium Standard Compatible
with RPi
Zero 2W

Yes
(tracking
algorithms)

Largest

OpenMV H7 Low Fastest Standard Not specified Yes
(tracking
algorithms)

Large

OpenMV H7
Plus

HIgh Medium Standard Not specified Yes
(tracking
algorithms)

Large

Table 4.1.4b: Evaluation of camera choices

Final Selection: IMX219 Cam 160 FOV

Justification: IMX219 Cam 160 FOV performs great in most areas: good compatibility with the
chosen board Raspberry Pi Zero 2W, high resolution rate and large field of view. Although the
frame rate is slow, this can be solved by lowering the resolution rate. With testing and
adjustments, the most balanced configuration could be found.

Tracking Algorithm:
Algorithm Implementation

Complexity
Power
Consumption

Accuracy Processing Time

Thresholding Simplest Lowest Good for simple
tasks

Fastest

Thresholding with
Morphological
Operations

Simple Low Solid for classic
techniques

Fast

Enhanced
Thresholding with
Advanced
Operations

Complex High Higher and more
consistent

Longest

Table 4.1.4c: Evaluation of Tracking Algorithm
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Final Selection: Thresholding with Morphological Operations

Justification: Given the high velocity of the darts after launch, the vision system operates under
strict time constraints. Thresholding with basic morphological operations offers a balance of
accuracy and speed, ensuring quick response times without heavy computational demands.
Algorithms can be further enhanced for specific purposes or be further simplified.
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4.2 Design and Prototype

This section outlines the design and prototyping process of the dart system, segmented into four
main components: the dart launcher, the dart, the electrical system, and the computer vision
system.

4.2.1 Dart Launcher

Figure 4.2.1a: Isometric View of CAD design

Figure 4.2.1b: Side View of CAD design
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Figure 4.2.1c: Plan View of CAD design

The screenshots provide a comprehensive overview of the CAD design for the dart launcher,
which consists of three main sections: the flywheel assembly, the revolver holder, and the lever
pusher. This current design does not incorporate a pitch and yaw mechanism. The overall
dimensions of the launcher, excluding the pitch and yaw assembly, measure 1000mm x 440mm x
396mm (L x W x H).

The first prototype was constructed by individually manufacturing the components using a
combination of methods, including sourcing off-the-shelf parts, 3D printing, acrylic laser cutting,
and CNC machining. The assembled prototype was then tested for structural rigidity and
precision.

The overall structure of the launcher is constructed using 20mm x 20mm aluminium profile bars
of varying lengths for a robust and modular frame.

Figure 4.2.1d: Isometric view of Flywheels Section Figure 4.2.1e: Front view of Flywheels Section
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The flywheel section consists of four flywheels driven by M3508 gear motors without gearboxes,
supported by two aluminium cantilever plates to secure the flywheels in place. Additionally, two
3D-printed guide bars are integrated to ensure precise alignment and accurate dart launching.

Figure 4.2.1f: Isometric view of Revolver Section Figure 4.2.1g: Side view of Revolver Section

The revolver section is primarily composed of 3D-printed parts and laser-cut acrylic components.
Darts are secured within dart holders mounted on a central rotation axis. With each 90-degree
rotation of the revolver, a new dart aligns with the flywheel section for launching. Key
mechanical components include bearings and an aluminium shaft, while the rotation and precise
positioning of the revolver are achieved using a MG996R servo motor and a NEMA 23 stepper
motor.

Figure 4.2.1h: Isometric view of Lever Pusher Figure 4.2.1i: Side view of Lever Pusher

The lever pusher mechanism consists of a 2-joint lever structure that pushes the dart into the
flywheel section using a 380mm long aluminium shaft. The shaft's movement is restricted to a
horizontal path by a linear bushing mounted on an acrylic plate, ensuring stable motion. The
system's actuation is controlled by an MG996R servo motor for precise operation.

Images of the physical prototype have been included in the appendix for reference.
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4.2.2 Dart

Passive Dart

Figure 4.2.2a: Side view Passive Dart CAD model

The Passive Dart is made out of 12 main parts inclusive of the dart trigger (BOM to be included
in appendix). During the Design process, there were a few main considerations

1. Attaching the replaceable tail piece to the main body
2. Attaching the side plates to the body
3. Easily replaceable fins

Figure 4.2.2b: Internal structure of removable pieces

To address the issue of securing these pieces together, we decided to use a clam shell design,
with 3 plates screwed together. The purple tail piece serves both as a plate for the screws as well
as geometrically constraining the movement of the upper and lower pieces of the body. M1.2
countersunk screws were used due to the geometrical limitation of the side plate being rather
small, a larger size would require a wider side plate which would have to have a curved surface
in contact with the Dart, which would likely result in higher manufacturing defects and
inaccuracies when 3d printing. Another important thing to note is the use of countersunk screws
on the side plates, this helped address the problem of the old design whereby the larger socket
head screws sticking out of the dart created indentations along the flywheels and resulted in a
much higher rate of wear and tear, likely leading to much higher inaccuracies.

As for attaching the fins, they are also made up of separate planar pieces, with slots cut out to
ensure that they can slide into each other (do note that they are not tightly fitted). They are then
held in place by similar m1.2 countersunk screws.
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Active Dart
Following the original pedagogy, the active dart is a modified passive dart, with the
interchangeable parts, the fins and the body upper being updated with internal supports to house
the electronics.

Figure 4.2.2c: Internal structure of servo support

Given the rounded internal geometry, we approached the selection of servos from mostly a size
perspective. It is also important to note the left and right handedness of the servo, only then does
it fit in the body. It is also notable that the M1.2 mounting holes are a potential cause of failure
and are relatively weak.

The top of the servos horns are connected to servo rods which are directly connected to the
active surfaces on the fin, which are on a hinge joint with the main fin surface.

Figure 4.2.2d: Active surfaces and hinge joint

The hinge joint is secured using a section of M1.2 servo rod. The degree of freedom of the active
surface is largely influenced by the height of the hinge structure. There is obstruction when the
horn goes under the plane of the fin.

Manufacturing Details
3d printing for the dart body can be specifically difficult given the odd geometry. This is
specifically relevant for the upper part of the body and the internal standoffs. The automatically
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generated supports are often not ideal.

Figure 4.2.2e: Support painting for body upper

3D print settings:
- Support settings:

All supports were painted on for the body, with only the upper part of the active dart
requiring support.

- Seam settings:
Seams are painted on to ensure consistency in the layers, when random seems were used,
the dimensional accuracy decreased

- PLA Aero:
When printing PLA Aero, we used the setting suggested by
Bambu Lab. (n.d.). Studio settings for RC models. Bambu Lab Wiki. Retrieved
November 14, 2024, specifically, retraction was tuned to reduce the amount of stringing
while 3d printing. It was also noted that prints are generally much better performing
when the filament is dried beforehand due to the hygroscopic nature of PLA Aero

Using of Servo rods:
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4.2.3 Electrical System

Figure 4.2.3e: Arduino circuit diagram - NEMA+MG996R+PB

The team presents the above electrical system integrating the NEMA 23 stepper motor with a
TB6600 driver and powered by an RM battery, as well as two MG996R servo motors. A push
button has been added for this sub-system testing for the ease of triggering a new cycle of
rotations.

Successful results of the above sub-system testing can be viewed here:
https://www.youtube.com/watch?v=qLhBmzX3Jrg.

The DC gear motor + CAN code, vibration sensor code and flywheel control code can be found
in the appendix.
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4.2.4 Computer Vision

Software

Figure 4.2.4a: flowchart of tracking algorithm

The prototype vision system implements a vision-guided control system, integrating a micro
servo motor to demonstrate adaptive motion adjustment based on visual feedback. Figure 4.3X
presents the vision system's operational flowchart, illustrating the following key processes:

50



● Initialization

○ Configuration of the camera module at 640x480 resolution

○ Establishment of RGB threshold parameters for green detection:
LOWER_THRESHOLD = np.array([0, 100, 0])

UPPER_THRESHOLD = np.array([100, 255, 100])

● Processing Sequence

○ Image processing via the find_blobs() algorithm to detect green blobs

○ Upon successful green blob detection, the system performs:

a) Identification of the largest detected region

b) Position calculation relative to the frame coordinates

○ Servo actuation is determined by the blob's centre x-coordinate (cx):

■ Downward movement when cx < 150

■ Position maintenance within 150 ≤ cx ≤ 450

■ Upward movement when cx > 450

● System Control Architecture

○ The operational duration is determined by the pre-established recording
parameters

○ The system is equipped with manually keyboard interrupt

In the find_blob function, thresholding and morphological operation are used. Details are shown
in the flowchart below:
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Figure 4.2.4b: flowchart of colour detecting algorithm

The initial algorithm design incorporated both thresholding and morphological operations, as
illustrated in the flowchart above. However, the results of our testing revealed unacceptable
latency in the system's response with morphological operations. Consequently, the implemented
green detecting algorithm removes morphological operation to ensure a short processing time.
Details of code can be found in appendix X.
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Electronics

Figure 4.2.4c: Electronic Architect of Vision System

Figure 4.2.4d: Physical Setup of Vision System

As shown in figure 4.3X and figure 4.3X, the vision system employs a distributed power
architecture with centralised control. The key components are:

● Power Management:

○ Battery serves as the primary power source

○ Buck converter steps down 26V to 5V for system components
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○ Perfboard distributes power efficiently while maintaining signal integrity

● Control Integration:

○ Raspberry Pi Zero 2W functions as the central controller

○ IMX219 camera connects via CSI

○ D1015PRO linear servo receives control signals via GPIO 12 on Raspberry Pi

This architecture ensures reliable operation while maintaining system responsiveness for
real-time tracking applications. The perfboard implementation provides a robust platform for
prototyping and the use of JST connectors can help maintain connection stability.
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Chapter 5 | Testing and Validation

5.1 Description of Testing Methodologies

We have developed a comprehensive testing plan for the dart system, addressing key aspects
including the mechanical design of the dart launcher, the electrical and software systems, the
dart’s robustness and stability, the computer vision system, and, most importantly, the overall
accuracy of the dart-launching system. This section outlines our testing methodologies for each
subsystem.

5.1.1 Dart Launcher

For the dart launcher, three primary criteria must be met and rigorously tested:

1. The dart should launch in a straight path upon contact with the flywheels.
2. The revolving mechanism should reliably position each dart into the flywheel section.
3. The lever pusher must function smoothly and accurately to ensure consistent dart

placement.

The team will employ a mix of observation and data collection through dart launches. Below is
the approach for testing each criterion:

1. Flywheel Launches: The team will set up an overhead camera above the flywheel
section to capture slow-motion video of dart launches. Video playback will allow us to
review frame-by-frame screenshots to assess if the dart launch is straight. Additionally,
this footage will reveal whether the interference between the dart’s body and flywheel
provides enough friction for consistent launches reaching a target distance of at least 15
metres.

2. Revolving Mechanism Accuracy: The team will incorporate a stepper motor to rotate
the revolver 90 degrees each time a button is pressed. To verify rotation accuracy, the
team will use visual inspection alongside a spirit level to check if the top dart holder
returns to a horizontal alignment after each turn. The team will also ensure that the dart
aligns correctly with the flywheel section after each rotation.

3. Lever Pusher Efficiency: The team will test the lever pusher mechanism by cycling it
back and forth with an attached servo motor, checking for smooth operation and minimal
resistance in the rotation joints. The team will also confirm that the pusher shaft is of
sufficient length to fully deliver the dart into the flywheel section, establishing contact
with the flywheels. Lastly, the team will ensure the shaft fully retracts without obstructing
the dart holders for subsequent rotations.

5.1.2 Dart

For the Dart,
1. Common points of failure
2. Consistency of flight and its ability to “correct” for small perturbations from launch or in

flight
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3. Mass distribution of the Dart and its effect on Launch Distance

5.1.3 Electrical System

Project progress in the electrical aspect is tested with reference to 3 main criteria:

1. Vibration: Vibration sensor values should show the difference in values between using
the old pre-UERx launcher vs the new UREx launcher during launching. The sensor is
mounted on the main launcher body frame, in close proximity to the flywheels.

A properly integrated vibration sensor detects the variation in movement. It should be
able to verify the previous hypothesis that the old launcher could not achieve accuracy
due to high vibrations during launch.

2. Stepper motor: We aim to achieve precise controls in the form of angular position for
the stepper motor controlling the revolver mechanism.

Positional control for the stepper motor is deemed successfully accurate if the motor
spins exactly 90 degrees and the dart rails on the revolver mechanism align with the dart
rails on the launching platform.

3. Servo motors: We aim to achieve timely and effective actuation of servo motors (one to
lock the revolver frame and another to push a single dart out of the revolving frame to
feed into the flywheels for launch).

Servo control is deemed successful if the revolving mechanism cycles smoothly
according to the intended sequence of events without jamming itself. In addition, the
servo motor has to successfully feed a dart far enough on the rails of the launching
platform such that the dart flies out.

5.1.4 Computer Vision

For computer vision, the effectiveness, efficiency and reliability should be tested:

Aspect Criteria of Success Test Method

Effectiveness The system must achieve the
following functions:

- Identify green targets
- Execute servo

control based on
target positioning

Position green target at
predetermined coordinates,
test if the system can react as
expected.

Efficiency The system should respond
in a sensitive manner: the
tracking algorithm should be
capable of detecting the
green once it enters the

Record the response time
and do evaluation.
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camera frame, and the servo
motor must then react
accordingly.

Reliability System should maintain
consistent performance
during the whole operation.

Test continuously to analyse
the consistency.

Table 5.1.4a: Computer Vision Testing

5.1.5 Launching Accuracy

Figure 5.1.5a: Launch Test Map (Engineering Auditorium)

To test the launch accuracy, the team conducted a series of launch tests in the open area outside
the Engineering Auditorium (EA) on level 3. A large white paper, composed of six A4 sheets
(approximate dimensions: 0.63m x 0.58m), are placed on the ground with a cross marked at the
centre as the origin. To record each landing point, the dart heads are coloured with crayons so
that contact with the paper leaves a visible mark.

The open test environment featured variable conditions, including occasional light drafts due to
wind flow, which will be absent in the controlled, draft-free RMUC arena. This outdoor setup
introduces potential deviations in trajectory caused by environmental factors, such as uneven
wind resistance or air turbulence, that would not affect the darts in the competition environment.
While this testing environment differs from the RMUC arena, it provides a preliminary stress test
for the system’s robustness in less predictable conditions. The large open space also allows for
testing the darts' stability over the entire intended range, something critical to evaluate before
transitioning to competition-level controlled trials.
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The team performed multiple launches with darts of identical configurations, repeating the
process for several different darts. For each launch, the team measured and recorded the distance
from the origin to the landing point. Calculating the average deviation of all launches allows the
team to assess the overall accuracy of the system and compare it with data from the previous dart
launcher. This data also gives an estimate of the improvements needed to achieve consistent
accuracy in hitting the target tower within the RMUC arena.

5.2 Final Launch Results

The following data was collected from a series of launch tests. For all tests, the flywheels were
set to an angular speed of 10,000 rpm, and the launcher was angled at 45 degrees. While not all
darts hit the target paper directly, the team tracked each dart’s landing point using visible marks
left on the ground and measured the distances (in metres) from the origin.

Launch
No.

Dart Type Landing Point, (x, y), in
metres

Absolute Distance to
Target, in metres

1 Full PLA (0.67, -0.81) 1.05

2 Full PLA (-0.33, 0.52) 0.62

3 Full PLA (-0.32, 1.45) 1.48

4 PLA body + PLA Aero fins (1.22, -1.80) 2.17

5 PLA body + PLA Aero fins (-0.24, -1.34) 1.36

6 PLA body + PLA Aero fins (0.49, -1.03) 1.14

7 Full PLA Aero (-1.02, 3.36) 3.51

8 Full PLA Aero (0.65, 2.23) 2.32

9 Full PLA Aero (0.23, 2.75) 2.76
Table 5.2a: Test Results

*Data collected are subjected to ~2% errors

Please refer to the videos in this link:

PLA body + PLA Aero fins: https://youtube.com/shorts/bvZN9Jkd8aI?si=PNlMrtP9aqnK6-N0
Full PLA: https://youtube.com/shorts/37MI46xF4Rw?si=mi15Q_Ab14RbUDqv
Full PLA 2: https://youtube.com/shorts/SThk3FEggHc?si=nHwTnP7lkRfCTRPg
Full PLA Aero: https://youtube.com/shorts/2nYlhDYRY6s?si=PAv1aS1_gkjait2S
PLA body + PLA Aero fins: (Different view):
https://youtu.be/vplNyxLJ6pc?si=eddIMXW6KwLa-VEf
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Chapter 6 | Results and Discussion

6.1 Analysis of Test Data

This section will address the testing criteria outlined in Section 5.1. Using the data collected in
Section 5.2, we will analyse observed trends and provide validation, discussion, and justification
for the testing conducted.

6.1.1 Dart Launcher

1. Flywheels Launches: The data collected in Section 5.2 shows that the deviation in the
x-direction is significantly smaller than that in the y-direction. The average absolute
deviation in the x-direction is ±0.57m, while in the y-direction, it is ±1.70m. This
indicates that the launches were relatively straight and consistent along the x-axis but less
consistent along the y-axis. The average distance to the target is 1.82 metres, with the
closest shot at 0.62 metres and the farthest at 3.51 metres, indicating significant room for
improvement. Further refinement of the launching mechanism is necessary to achieve
better consistency and accuracy. This enhancement will be crucial for ensuring the
system's reliability and performance in the upcoming RMUC.

2. Revolver Mechanism Accuracy: Upon integrating the first prototype of the revolver
feeding mechanism with a NEMA-23 stepper motor, the team programmed the motor to
rotate 90 degrees per button press. Initial tests of the motor when it is not connected to
the mechanical system showed accurate 90-degree rotations with minimal deviation.
However, once connected to the revolver system, each rotation deviated by up to ±30
degrees. The team suspects that the added mass of the revolver system, combined with
friction between mechanical components such as bearings, shafts, and the motor coupler,
may contribute to the observed discrepancies.

3. Lever Pusher Efficiency: The team tested the lever pusher mechanism by activating the
MG996R servo motor connected to the lever pusher shaft. However, due to poor design
of the joints between the shaft and servo motor arm, the lever pusher failed to function
properly and often became stuck when attempting to push forward. Additionally, the shaft
could not fully retract from the dart holder, likely due to the shaft's length and joint
configuration. The angled dart launcher and gravitational force further hindered the
system, and the lack of bearings at the joints contributed to excessive rotational friction.
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6.1.2 Dart

CFD Simulations of Dart:
Given that the dart was Designed to have no camber and have all aerodynamic surfaces to have
no lift, we expect there to be little variance in pressure across the top and bottom surfaces of the
dart. This is reflected in the CFD performed in SolidWorks, the simulations were performed at an
estimated launch Velocity of 16.5ms^ -1.

There is a slight difference in pressure at the top and bottom of the dart due to the asymmetrical
shape of the Dart Head. This is likely from the more aerodynamically shaped top, resulting in a
higher air velocity.

Velocity along the centre plane of the Dart
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Velocity across all surfaces of the Dart

This also suggests there is a very slight lift being generated, Below are the simulated values for
Lift and Drag.

Launch Simulations:
Based on the Lift and Drag Values, the launch angle of 47° (as per experiment), and mass of 110g
(full PLA dart) a simple model based on Parabolic motion affected by lift and drag was
developed (Python code in appendix). Note that the coefficient of lift and drag are non consistent
over different velocities, this is assumed to be constant in this simulation and a source of error.

Symbolically solved expression for Distance travelled based off the parameters

Simulation based on launch speed of 16.5 m^-2 the expected distance travelled was calculated.
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Launch trajectory given 16.5 m^-1 launch, final distance travelled is 22.69m.

The effect of launch speed on distance can also be calculated.

Effect of launch speed on distance

The effect of increasing mass on distance was also simulated. It is observed that the optimal
weight is above 0.9kg, it is likely due to the dart with greater mass being less affected by drag
due to it carrying more momentum.

Effect of mass on distance
Although not exactly accurate due to variation in launch velocity and assumptions made in the
model, these simulations provide a decent approximation to real world results.
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6.1.3 Electrical System

Motor Controls

The integration of the electrical subsystem (stepper and servo motor control) with the mechanical
system (physical launcher) have been described in 6.1.1 Dart Launcher section.

Watch a slow-movement recording of the integrated system testing here:
Integrated electrical sub-system with mechanical sub-system - backsliding observed

To reiterate with a focus on the electrical controls, the integration of a motor controls subsystem
which works independently could not be successfully integrated with the revolver mechanism
due to the added weight of the mechanical structure. The team suspects that the NEMA 23
stepper motor does not have enough torque to rotate the shaft to the agility as during sub-system
testing. It is also open-loop and not compatible with encoders, and thus does not have positional
feedback to realise that it has skipped steps, so those steps are therefore not accounted for and
compensated back.

Vibration Monitoring

In terms of quantifying the amount of vibrations during launch - for the old dart launcher and the
new dart launcher the team has built - the 801S vibration sensor was adhered to each of the
launcher frames with epoxy and integrated with Arduino UNO. The serial plots below show the
results:

Table 6.1.3a: Vibration Data for the Old Launcher
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Table 6.1.2b: Vibration Data for the New Launcher

Comparing the results from the vibration sensor tests, the peak vibration values and graph shapes
for both the old and new dart launchers are comparable, suggesting that the old launcher likely
did not suffer from significant vibration-related issues. The results challenge the initial
hypothesis that vibrations were a primary cause of the poor performance observed in the old
launcher.

However, these results do not conclusively indicate that the new launching system is not
superior. The inconsistencies in the old launching system may stem from other factors, such as
the quality of dart design. Therefore, while vibration may not have been a significant issue, the
new launching system design should still be further evaluated for overall performance
improvements. Additional testing and diagnostics are recommended to identify and address other
potential sources of instability to ensure consistent and reliable operation.
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6.1.4 Computer Vision

The vision system was tested separately in a static approach rather than launching out due to the
constraints of the size of the dart. Test results are summarised in the table below:

Aspect Test Result Analysis

Effectiveness - Servo moved upwards when
the target is at the right;

- Servo moved downwards when
the target is at the left;

- Servo maintained position
when the target is at the centre.

The system successfully demonstrated
all required positioning responses with
high accuracy

Efficiency - In all testing, the camera could
react very fast to the change of
target.

- Servo responded promptly but
exhibited cumulative delay
over extended operation

While initial response times met
requirements, the cumulative servo
delay requires attention for extended
operations

Reliability Performance maintained consistent
performance across 10+ test iterations,
each test ran for 90 seconds without
degradation

Long-term stability validated under
controlled conditions

Table 6.1.4a: Vision System Testing Results

The vision system testing demonstrated consistent green target identification and accurate servo
motor control based on target positioning. However, the servo's response delay may impact
system efficiency in dynamic situations. While static testing validated the core functionality, real
competition scenarios with moving darts may present additional challenges for vision accuracy
and tracking performance that weren't evaluated in these controlled tests.
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6.2 Potential Improvements Based on Test Results

Section Potential Improvements

Dart Launcher 1. The significant deviation in both x- and y-axis distances may result
from uncalibrated flywheel motors, which appear to operate at
slightly different angular speeds. This discrepancy impacts the
distance consistency (y-axis) more than the straightness (x-axis) of
the trajectory. The data suggests that our dart system maintains
better control over trajectory alignment than flight distance. From
slow-motion overhead video screenshots, the dart is observed to
travel straight upon exiting the launcher.

Figure 6.2a: Screenshots of Dart Position at Launching

To address this, the dart team could implement PID control to
regulate and calibrate the flywheel rotation speeds, ensuring
uniform speed across all four flywheels. Additionally, testing
various angular speeds may help identify an optimal speed for
achieving consistent, accurate hits at a 15m range.

2. To enhance the revolver feeding mechanism, the team could
position a servo motor beneath the dart holder. After each rotation,
the servo would activate to stop the dart holder at the 90-degree
mark. This provides a more reliable mechanical alignment method
compared to relying solely on the stepper motor's accuracy.
Alternatively, implementing PID control on the stepper motor, with
positional feedback, could improve the accuracy and ensure
consistent performance even with the added mass of the revolver
system.

3. To improve the current lever pusher mechanism, a linear actuator
(as shown in Figure 6.2b) could replace the existing complex
pusher system to simplify the design. The next iteration would
focus on designing mounts for the linear actuator and selecting an
appropriate off-the-shelf actuator to serve as the pusher shaft. This
solution would streamline the mechanical system, ensuring better
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efficiency and reducing the likelihood of failure.

Figure 6.2b: Example of a linear actuator

Dart 1. The Tail piece of the Dart is susceptible to breaking, especially
when the tail of the dart collides with the ground, the mechanism
for attaching the 2 parts can be modified to provide greater strength
in the vertical direction so that the part is not sheared off.

2. The possible angles for deflection of the aerodynamic surfaces on
the active dart have to be iteratively experimented on together with
the control policy.

3. Side structure of both the active and passive dart can also be tested
to see how it influences the speed of the launch. This current round
of tests uses 4mm height.
Different interference fits are likely to deform the flywheels
differently resulting in variance in speeds.

4. The Active Dart requires a custom PCB in order to fit the buck
boost, Rpi as well as the camera. Further testing is required on the
weight distribution for such a set up.

Electrical System 1. The NEMA 23 stepper motor does not have enough torque to rotate
the shaft to required precision. This is because it is open-loop and
will not realise when it skips steps, and so those steps cannot be
compensated for. To counter this issue, it is possible to:

a. Find a stepper motor with even higher torque and add an
encoder with closed-loop feedback signals, tracking the
motor shaft's position and speed.

b. Add a stopping mechanism. (Optional: switch to a DC gear
motor and) Integrate a pair of opto sensors to indicate the
angular position of the revolver and stop the gear motor
when it triggers the 2nd sensor at the position suitable for
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dart loading. Alternatively, a servo motor can be added to
introduce a mechanical barrier to force the revolver frame
to stop rotating when it reaches a certain precise limit. This
forced stop happens mechanically while the stepper or gear
motor is still running. It releases momentarily after the dart
has been launched.

2. Electrical subsystems may have to be converted to be hosted by
Dev-C to be used in the competition. We will need to use wireless
control on the system to control its activity during the match. While
the remote control is an existing skill set of many competition team
members, it is still work to be done.

Computer Vision 1. The test results revealed a noticeable cumulative delay in servo
response. This delay affects the system's ability to track targets
smoothly and could be more serious during actual dart launches. To
address this, implementing a more efficient servo control algorithm
could help reduce response time. Testing different PWM
frequencies and optimising the control loop timing could minimise
the cumulative delay effect. In addition, higher-performance with
shorter response time could be considered.

2. Current testing was limited to static conditions, which may not
accurately represent the system's performance during actual dart
launches where rapid target tracking is crucial. The vision system's
ability to maintain accuracy during high-speed scenarios remains
unverified. To improve this limitation, a dynamic testing setup
should be developed and further improvement on algorithms could
be considered based on the testing results.

Table 6.2a: Potential Improvements
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Chapter 7 | Budget Analysis

7.1 Bill of Materials

Type Expense / SGD$

Electronics 719.47

Mechanical Parts 145.36

Manufacturing 487.90

Testing Materials 88.58

Total 1531.31

Table 7.1a: Summarised BOM

Electronics costs encompass all components and hardware associated with the dart launcher and

the dart itself, including boards, cameras, actuators, batteries, and cables. Mechanical parts

purchased include bearings, couplers, shafts, clamps, and fasteners for the dart launcher, as well

as weights and nuts for the dart. Manufacturing costs covered fabrication services from the

NUS Professional Workshop, based on provided drawings, and specialty 3D-printing services

from the Innovation & Design Hub (EDIC). Testing materials primarily included Aero PLA and

standard PLA spools used for 3D-printing dart bodies. A detailed Bill of Materials (BOM) is

attached in the appendix.
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Chapter 8 | Conclusion

8.1 Summary of Key Findings

The first prototype of the dart launcher (excluding the base, pitch, and yaw system) has been
designed and fabricated as a proof of concept. Several issues were identified, including the
imbalance of the flywheel's angular velocity, inaccuracies in the revolver feeding mechanism,
and design flaws in the lever pusher mechanism. Despite these challenges, the team was able to
pinpoint the sources of error and propose solutions, such as using a mechanical alignment to
mitigate the inaccuracies of stepper motor, and replacing the lever pusher mechanism with a
linear actuator. Further iterations are necessary to refine the system, as is typical in engineering
projects. Throughout this project, the team gained valuable experience in mechanical design and
fabrication techniques, and have significantly improved their ability to discern the reasons
behind successful and unsuccessful designs.

The redesigned dart has proven that a large contributing factor to the inconsistencies in the
previous design was the weight distribution and the suboptimal aerodynamic profile of the old
system. We have also validated the use of PLA Aero together with PLA for more complex
designs that would not be possible using the previous TPU 95A. This was done in conjunction
with a modular design to increase the ease of repair due to the more fragile nature of PLA and
PLA Aero. Lastly, the modular structure was adapted to work with an actively controlled dart, It
was then proven that servos can be used to control the active control surfaces at the back of the
dart, however, there are design limitations in assembly due to the requirement of a customised
PCB to house all the electronics within the housing.

The Cytron 801S vibration sensor successfully recorded vibration data from both the old and
new dart launcher systems, showing no significant differences in vibration levels, which ruled
out vibrations as the primary cause of the old launcher’s inconsistencies. The NEMA 23 stepper
motor provided accurate 90-degree rotations during sub-system testing, but struggled under
full-load conditions due to insufficient torque and the absence of positional feedback, causing
misalignments in the revolver mechanism. Servo motor integration was not attempted due to
expected jams in the mechanical structure, preventing effective testing of dart feeding and frame
locking. Transitioning to an Arduino UNO for electrical controls improved development ease
and reduced subsystem interference, but further development is needed to enable wireless control
for competition readiness.

For computer vision, although it is not implemented, the system successfully achieved its core
functionalities in static testing conditions. Using the Raspberry Pi Zero 2W and IMX219 camera
(160° FOV), the system demonstrated consistent green target detection and appropriate servo
control responses. Testing showed rapid target detection capabilities, though a notable
cumulative delay in servo response was observed. The hardware integration provided adequate
processing power, and the system maintained reliable performance across multiple test cycles.
However, the limitation to static testing means performance under dynamic competition
conditions remains unverified.
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8.2 Future Plans

In the future, additional test launches should be conducted to assess the improvements made to
the dart system as a whole. Refinements are necessary for the existing subsystems, and new
subsystems will need to be designed and integrated.

The current dart launcher prototype lacks a base with pitch and yaw mechanisms due to the
project time constraints. These should be implemented and integrated with the existing system in
future iterations, and tested in a similar manner. In terms of structural rigidity, the current
prototype performs well, as most components are fabricated from aluminium profile bars,
aluminium plates, and off-the-shelf mechanical parts. However, some parts were 3D printed or
laser-cut from acrylic for prototyping. Once the design is finalised and all systems are thoroughly
tested, these parts should be replaced with CNC-machined metal or stronger materials, such as
carbon fibre. Overall, the dart launcher system requires further testing, refinement, and
improvements to ensure optimal performance for the upcoming RMUC competition.

The Dart can potentially gain even more from more rigorous testing on the weight distribution in
the dart, this would be even more so important in the passive dart to ensure that the Dart trigger
is at the optimal angle when it hits the target. More experimentation is also possible on the effect
of different profiles and shapes of the modular fins and their respective aerodynamic properties.
The side plates can also be experimented on, determining the optimal interference fit for more
efficient launches could potentially result in more stable and consistent launch angles as well.
On the active Dart, more experimentation is also possible on the optimal size of the control
surface and the optimal control policy for good aerodynamic response in the final active Dart.
This would be possible upon the completion of a customised PCB to house all the electronics
needed by an actively controlled system.

To address positional inaccuracies, a higher-torque stepper motor with encoder-based
closed-loop control should be explored, else a DC gear motor with opto sensors for precise
stopping could be implemented. Servo motor integration will be revisited once mechanical
jamming is resolved, ensuring smooth dart feeding and locking mechanisms. The electrical
subsystem may have to transition to the Dev-C to enable wireless operation during competition.
PID parameters for flywheel controls will be tuned to enhance propulsion accuracy and
consistency under RMUC conditions.

The computer vision system improvements can be prioritised alongside other subsystem
enhancements. The current thresholding algorithm requires upgrades through morphological
operations to improve target detection reliability. After dynamic testing is completed, more
sophisticated image processing methods like background subtraction and optical flow tracking
could be implemented for better moving target detection. While leveraging OpenCV libraries
would provide access to optimised algorithms, careful consideration must be given to processing
overhead on the Raspberry Pi Zero 2W platform.

Hardware improvements for the vision system should focus on reducing system latency. The
existing servo motor might need to be upgraded to a higher-performance model to address the
cumulative delay issues. Additionally, like other subsystems, the vision components require
testing in competition-representative conditions. This would enable proper calibration of
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thresholding parameters under RMUC-specific lighting and validate performance across the
required 15-30 metre target distances.

The overall system testing should also be planned to be tested in a draft-free setting. If the
competition team intends to use the current location for preliminary stress tests, as an
intermediate measure, wind speed can be intermittently recorded during testing to note potential
correlations with dart deviations. This is to mitigate the influence of drafts and better
approximate competition conditions. Ultimately, however, sport halls in the university should be
booked prior to the competition to validate the performance of future dart systems in conditions
closest to the RMUC setting.
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Appendix E: M3508 mount

/* USER CODE BEGIN Header */

/**

******************************************************************************

* @file : main.c

* @brief : Main program body

******************************************************************************

* @attention

*

* Copyright (c) 2023 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE file

* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.

*

******************************************************************************

*/

/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/

#include "main.h"

/* Private includes ----------------------------------------------------------*/

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/

/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/

/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/

/* USER CODE BEGIN PM */

int16_t motor_rpm1;

int16_t motor_rpm2;

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

CAN_HandleTypeDef hcan1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

static void MX_CAN1_Init(void);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
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/* USER CODE BEGIN 0 */

void setup_can(){

CAN_FilterTypeDef can_filter_st = {0};

can_filter_st.FilterActivation = ENABLE;

can_filter_st.FilterMode = CAN_FILTERMODE_IDMASK;

can_filter_st.FilterScale = CAN_FILTERSCALE_32BIT;

can_filter_st.FilterIdHigh = 0;

can_filter_st.FilterIdLow = 0;

can_filter_st.FilterMaskIdHigh = 0;

can_filter_st.FilterMaskIdLow = 0;

can_filter_st.FilterBank=0;

can_filter_st.FilterFIFOAssignment = CAN_RX_FIFO0;

HAL_CAN_ConfigFilter(&hcan1, &can_filter_st);

HAL_CAN_Start(&hcan1);

HAL_CAN_ActivateNotification(&hcan1,CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_RX_FIFO0_FULL| CAN_IT_RX_FIFO0_OVERRUN);

}

void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan){

CAN_RxHeaderTypeDef rx_header;

uint8_t rx_buffer[8];

HAL_CAN_DeactivateNotification(hcan,

CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_RX_FIFO0_FULL| CAN_IT_RX_FIFO0_OVERRUN);

HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &rx_header, rx_buffer);

if (rx_header.StdId == 0x203)

{

motor_rpm1 = (rx_buffer[2] << 8) + rx_buffer[3];

}

if (rx_header.StdId == 0x202)

{

motor_rpm2 = (rx_buffer[2] << 8) + rx_buffer[3];

}

HAL_CAN_ActivateNotification(hcan,

CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_RX_FIFO0_FULL| CAN_IT_RX_FIFO0_OVERRUN);

}

void ctrl_motor(int16_t torque1,int16_t torque2){

uint8_t tx_msg[8];

CAN_TxHeaderTypeDef CAN_tx_message;

uint32_t send_mail_box;

CAN_tx_message.IDE = CAN_ID_STD;

CAN_tx_message.RTR = CAN_RTR_DATA;

CAN_tx_message.DLC = 0x08;

CAN_tx_message.StdId = 0x200;

tx_msg[4] = torque1>>8;

tx_msg[5] = torque1;

tx_msg[2] = torque2>>8;

tx_msg[3] = torque2;

HAL_CAN_AddTxMessage(&hcan1, &CAN_tx_message, tx_msg, &send_mail_box);

}

#define KP 1

#define KI 0.01

#define KD 0

#define INT_MAX 5000

int16_t pid_lol(int16_t setpt, int16_t curr_pt){

static float integral;

static float prev_error;

float error = setpt - curr_pt;

integral += error * KI;

integral = (integral > INT_MAX) ? INT_MAX : (integral < -INT_MAX) ? -INT_MAX : integral;

float diff = (prev_error - error) * KD;

prev_error = error;

return (error * KP) + integral + diff;

}

int16_t pid_lol_2(int16_t setpt, int16_t curr_pt){

static float integral;

static float prev_error;
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float error = setpt - curr_pt;

integral += error * KI;

integral = (integral > INT_MAX) ? INT_MAX : (integral < -INT_MAX) ? -INT_MAX : integral;

float diff = (prev_error - error) * KD;

prev_error = error;

return (error * KP) + integral + diff;

}

#define SPEED 557

/* USER CODE END 0 */

/**

* @brief The application entry point.

* @retval int

*/

int main(void)

{

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Configuration--------------------------------------------------------*/

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */

HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */

SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */

MX_GPIO_Init();

MX_CAN1_Init();

/* USER CODE BEGIN 2 */

setup_can();

//uint32_t last_button_time = HAL_GetTick();

//int16_t spd = 1;

/* USER CODE END 2 */

/* Infinite loop */

/* USER CODE BEGIN WHILE */

int counter=0;

while (1)

{

ctrl_motor(pid_lol(SPEED,motor_rpm1) , pid_lol_2(SPEED,motor_rpm2));

//ctrl_motor(pid_lol(SPEED,motor_rpm1) , pid_lol(SPEED,motor_rpm2));

//ctrl_motor(SPEED);

HAL_Delay(1); //milliseconds

counter += 1;

if (counter==3000){ //1000 counts for 1 cycle

ctrl_motor(0, 0);

break;

}

/*

if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == 0){

if (HAL_GetTick() - last_button_time > 500){

spd = (spd == 1) ? 0 : (spd== 0) ? -1 : (spd == -1) ? 1 : 0;

last_button_time = HAL_GetTick();

}

}

*/
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/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

}

/* USER CODE END 3 */

}

/**

* @brief System Clock Configuration

* @retval None

*/

void SystemClock_Config(void)

{

RCC_OscInitTypeDef RCC_OscInitStruct = {0};

RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

/** Configure the main internal regulator output voltage

*/

__HAL_RCC_PWR_CLK_ENABLE();

__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

/** Initializes the RCC Oscillators according to the specified parameters

* in the RCC_OscInitTypeDef structure.

*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;

RCC_OscInitStruct.HSEState = RCC_HSE_ON;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

RCC_OscInitStruct.PLL.PLLM = 6;

RCC_OscInitStruct.PLL.PLLN = 168;

RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;

RCC_OscInitStruct.PLL.PLLQ = 4;

if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

{

Error_Handler();

}

/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)

{

Error_Handler();

}

}

/**

* @brief CAN1 Initialization Function

* @param None

* @retval None

*/

static void MX_CAN1_Init(void)

{

/* USER CODE BEGIN CAN1_Init 0 */

/* USER CODE END CAN1_Init 0 */

/* USER CODE BEGIN CAN1_Init 1 */

/* USER CODE END CAN1_Init 1 */

hcan1.Instance = CAN1;

hcan1.Init.Prescaler = 3;

hcan1.Init.Mode = CAN_MODE_NORMAL;

hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ;

hcan1.Init.TimeSeg1 = CAN_BS1_9TQ;

hcan1.Init.TimeSeg2 = CAN_BS2_4TQ;

hcan1.Init.TimeTriggeredMode = DISABLE;

hcan1.Init.AutoBusOff = DISABLE;

hcan1.Init.AutoWakeUp = DISABLE;

hcan1.Init.AutoRetransmission = DISABLE;

hcan1.Init.ReceiveFifoLocked = DISABLE;
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hcan1.Init.TransmitFifoPriority = DISABLE;

if (HAL_CAN_Init(&hcan1) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN CAN1_Init 2 */

/* USER CODE END CAN1_Init 2 */

}

/**

* @brief GPIO Initialization Function

* @param None

* @retval None

*/

static void MX_GPIO_Init(void)

{

/* GPIO Ports Clock Enable */

__HAL_RCC_GPIOD_CLK_ENABLE();

__HAL_RCC_GPIOH_CLK_ENABLE();

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**

* @brief This function is executed in case of error occurrence.

* @retval None

*/

void Error_Handler(void)

{

/* USER CODE BEGIN Error_Handler_Debug */

/* User can add his own implementation to report the HAL error return state */

__disable_irq();

while (1)

{

}

/* USER CODE END Error_Handler_Debug */

}

#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t *file, uint32_t line)

{

/* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and line number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

/* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */

Appendix F: Dev-C (STM32) Code for Spinning Motors

#include <Servo.h>

// Define motor driver pins
const int stepPin = 3; // PULSE+ pin
const int enaPin = 4; // ENA+ pin
const int ena2Pin = 5; // ENA- pin
const int stepsPerRevolution = 400; // based on your motor driver's specification (steps per 360 degrees)

// Servo configuration
Servo servoMg996R; // Create Servo object
const int servoPin = 9; // Pin to servo signal
// Button configuration
const int buttonPin = 13; // Pin connected to the button
bool buttonPressed = false; // Variable to store button state
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// Movement control
int rotationCount = 0; // To track number of rotations
int totalRotations = 40; // Total number of 90-degree rotations
int delayTime = 1000; // User-defined delay time (1 second by default) - adjust as needed

void setup() {
// Initialize the motor control pins as outputs
pinMode(stepPin, OUTPUT);
pinMode(enaPin, OUTPUT);
pinMode(ena2Pin, OUTPUT);

//digitalWrite(dirPin, HIGH); // any direction of stepper works, no need
digitalWrite(enaPin, LOW); // ENABLE pin
digitalWrite(ena2Pin, HIGH); // ENABLE pin

// Initialize servo
servoMg996R.attach(servoPin); // Attach servo to specified pin
servoMg996R.write(0); // Set servo to initial position

// Initialize the button pin as input
pinMode(buttonPin, INPUT_PULLUP); // Use internal pull-up resistor

Serial.begin(9600);

// Hold position
servoMg996R.write(90);
Serial.println("0 degrees.");

}

void loop() {

if (digitalRead(buttonPin) == LOW) { // LOW means button is pressed due to INPUT_PULLUP
if (!buttonPressed) {
// Set buttonPressed to true to prevent multiple triggers
buttonPressed = true;

// Perform the motor and servo movements
moveStepper();
delayMicroseconds(2000);
moveServo();
rotationCount++;

}
} else {
// Reset the button state when it is released
buttonPressed = false;

}
}

void moveStepper() {
// Calculate steps for 90-degree rotation (quarter of a full rotation)
int steps = stepsPerRevolution / 4;

// generate PWM
for (int i = 0; i < steps; i++) {
digitalWrite(stepPin, HIGH);
delayMicroseconds(1000); // affects PWM period. affects for motor speed? idk
digitalWrite(stepPin, LOW);
delayMicroseconds(2000);

}

Serial.print("Rotation ");
Serial.print(rotationCount + 1);
Serial.println(" completed.");

}

void moveServo() {
// Move the servo to +90 degrees
servoMg996R.write(0);
Serial.println("+90 degrees.");
delay(600); // clockwise for x ms second

// Hold position
servoMg996R.write(90);
Serial.println("0 degrees.");
delay(250); // Hold position for x ms second

// servo to wait
servoMg996R.write(180);
Serial.println("-90 degrees.");
delay(600); // anticlockwise for x ms second

// Hold position
servoMg996R.write(90);
Serial.println("0 degrees.");
// delay(1000); // Hold position for x ms second

}

Appendix G: Arduino Code for Running Motors Sub-System (with Push Button)
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/* USER CODE BEGIN Header */

/**

******************************************************************************

* @file : main.c

* @brief : Main program body

******************************************************************************

* @attention

*

* Copyright (c) 2024 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE file

* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.

*

******************************************************************************

*/

/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/

#include "main.h"

/* Private includes ----------------------------------------------------------*/

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/

/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/

/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/

/* USER CODE BEGIN PM */

#define VIBRATION_PIN GPIO_PIN_9 // Replace XX with the actual pin number

#define VIBRATION_GPIO_PORT GPIOE // Replace X with the actual GPIO Port

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

TIM_HandleTypeDef htim1;

uint32_t IC_Value1 = 0;

uint32_t IC_Value2 = 0;

uint32_t Difference = 0;

uint8_t Is_First_Captured = 0; // Flag to indicate if the first capture is done

uint32_t pulseDuration = 0;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

static void MX_TIM1_Init(void);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**

* @brief The application entry point.

* @retval int

*/

int main(void)

{

/* USER CODE BEGIN 1 */
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/* USER CODE END 1 */

/* MCU Configuration--------------------------------------------------------*/

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */

HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */

SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */

MX_GPIO_Init();

MX_TIM1_Init();

/* USER CODE BEGIN 2 */

// Start the Input Capture in interrupt mode

HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_1);

/* USER CODE END 2 */

/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

}

/* USER CODE END 3 */

}

/**

* @brief System Clock Configuration

* @retval None

*/

void SystemClock_Config(void)

{

RCC_OscInitTypeDef RCC_OscInitStruct = {0};

RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

/** Configure the main internal regulator output voltage

*/

__HAL_RCC_PWR_CLK_ENABLE();

__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

/** Initializes the RCC Oscillators according to the specified parameters

* in the RCC_OscInitTypeDef structure.

*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;

RCC_OscInitStruct.HSEState = RCC_HSE_ON;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

RCC_OscInitStruct.PLL.PLLM = 6;

RCC_OscInitStruct.PLL.PLLN = 84;

RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;

RCC_OscInitStruct.PLL.PLLQ = 4;

if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

{

Error_Handler();

}

/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
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if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)

{

Error_Handler();

}

}

/**

* @brief TIM1 Initialization Function

* @param None

* @retval None

*/

static void MX_TIM1_Init(void)

{

/* USER CODE BEGIN TIM1_Init 0 */

/* USER CODE END TIM1_Init 0 */

TIM_MasterConfigTypeDef sMasterConfig = {0};

TIM_IC_InitTypeDef sConfigIC = {0};

/* USER CODE BEGIN TIM1_Init 1 */

/* USER CODE END TIM1_Init 1 */

htim1.Instance = TIM1;

htim1.Init.Prescaler = 72-1;

htim1.Init.CounterMode = TIM_COUNTERMODE_UP;

htim1.Init.Period = 65535;

htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

htim1.Init.RepetitionCounter = 0;

htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

if (HAL_TIM_IC_Init(&htim1) != HAL_OK)

{

Error_Handler();

}

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)

{

Error_Handler();

}

sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;

sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;

sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;

sConfigIC.ICFilter = 0;

if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN TIM1_Init 2 */

/* USER CODE END TIM1_Init 2 */

}

/**

* @brief GPIO Initialization Function

* @param None

* @retval None

*/

static void MX_GPIO_Init(void)

{

/* USER CODE BEGIN MX_GPIO_Init_1 */

/* USER CODE END MX_GPIO_Init_1 */

/* GPIO Ports Clock Enable */

__HAL_RCC_GPIOH_CLK_ENABLE();

__HAL_RCC_GPIOE_CLK_ENABLE();

/* USER CODE BEGIN MX_GPIO_Init_2 */

/* USER CODE END MX_GPIO_Init_2 */

}

/* USER CODE BEGIN 4 */

/* Input Capture Interrupt Callback Function */

void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)

{

86



if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) // Check if interrupt is from Channel 1

{

if (Is_First_Captured == 0) // First edge detected (rising edge)

{

IC_Value1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); // Capture first value

Is_First_Captured = 1; // Set the flag for first capture

__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_FALLING); // Switch to falling edge

}

else if (Is_First_Captured == 1) // Second edge detected (falling edge)

{

IC_Value2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); // Capture second value

if (IC_Value2 > IC_Value1)

{

Difference = IC_Value2 - IC_Value1; // Calculate the difference (pulse width)

}

else

{

Difference = (0xFFFF - IC_Value1) + IC_Value2; // Handle overflow

}

// Pulse width is in timer ticks; convert it to microseconds

pulseDuration = Difference; // Timer configured for 1 µs resolution

// Process the pulse duration (e.g., log or use it)

Is_First_Captured = 0; // Reset the flag for the next capture

__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_RISING); // Switch back to rising edge

}

}

}

/* USER CODE END 4 */

/**

* @brief This function is executed in case of error occurrence.

* @retval None

*/

void Error_Handler(void)

{

/* USER CODE BEGIN Error_Handler_Debug */

/* User can add his own implementation to report the HAL error return state */

__disable_irq();

while (1)

{

}

/* USER CODE END Error_Handler_Debug */

}

#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t *file, uint32_t line)

{

/* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and line number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

/* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */

Appendix H: Dev-C (STM32) Code for Running Vibration Sensor

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
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* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/

/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
int16_t motor_rpm1;
int16_t motor_rpm2;
int16_t motor_rpm3;
int16_t motor_rpm4;
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
CAN_HandleTypeDef hcan1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_CAN1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

void setup_can(){
CAN_FilterTypeDef can_filter_st = {0};
can_filter_st.FilterActivation = ENABLE;
can_filter_st.FilterMode = CAN_FILTERMODE_IDMASK;
can_filter_st.FilterScale = CAN_FILTERSCALE_32BIT;
can_filter_st.FilterIdHigh = 0;
can_filter_st.FilterIdLow = 0;
can_filter_st.FilterMaskIdHigh = 0;
can_filter_st.FilterMaskIdLow = 0;
can_filter_st.FilterBank=0;
can_filter_st.FilterFIFOAssignment = CAN_RX_FIFO0;
HAL_CAN_ConfigFilter(&hcan1, &can_filter_st);
HAL_CAN_Start(&hcan1);
HAL_CAN_ActivateNotification(&hcan1,CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_RX_FIFO0_FULL| CAN_IT_RX_FIFO0_OVERRUN);
}

void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan){
CAN_RxHeaderTypeDef rx_header;
uint8_t rx_buffer[8];
HAL_CAN_DeactivateNotification(hcan,
CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_RX_FIFO0_FULL| CAN_IT_RX_FIFO0_OVERRUN);

HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &rx_header, rx_buffer);

if (rx_header.StdId == 0x201)
{
motor_rpm1 = (rx_buffer[2] << 8) + rx_buffer[3];

}

if (rx_header.StdId == 0x202)
{
motor_rpm2 = (rx_buffer[2] << 8) + rx_buffer[3];

}
if (rx_header.StdId == 0x203)
{
motor_rpm3 = (rx_buffer[2] << 8) + rx_buffer[3];
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}

if (rx_header.StdId == 0x204)
{
motor_rpm4 = (rx_buffer[2] << 8) + rx_buffer[3];

}

HAL_CAN_ActivateNotification(hcan,
CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_RX_FIFO0_FULL| CAN_IT_RX_FIFO0_OVERRUN);

}

void ctrl_motor(int16_t torque1,int16_t torque2,int16_t torque3,int16_t torque4){
uint8_t tx_msg[8];
CAN_TxHeaderTypeDef CAN_tx_message;
uint32_t send_mail_box;
CAN_tx_message.IDE = CAN_ID_STD;
CAN_tx_message.RTR = CAN_RTR_DATA;
CAN_tx_message.DLC = 0x08;
CAN_tx_message.StdId = 0x200;
tx_msg[0] = torque1>>8;
tx_msg[1] = torque1;
tx_msg[2] = torque2>>8;
tx_msg[3] = torque2;
tx_msg[4] = torque3>>8;
tx_msg[5] = torque3;
tx_msg[6] = torque4>>8;
tx_msg[7] = torque4;
HAL_CAN_AddTxMessage(&hcan1, &CAN_tx_message, tx_msg, &send_mail_box);
}

#define KP 1
#define KI 0.01
#define KD 0
#define INT_MAX 5000
int16_t pid_lol(int16_t setpt, int16_t curr_pt){
static float integral;
static float prev_error;
float error = setpt - curr_pt;
integral += error * KI;
integral = (integral > INT_MAX) ? INT_MAX : (integral < -INT_MAX) ? -INT_MAX : integral;
float diff = (prev_error - error) * KD;
prev_error = error;
return (error * KP) + integral + diff;

}

int16_t pid_lol_2(int16_t setpt, int16_t curr_pt){
static float integral;
static float prev_error;
float error = setpt - curr_pt;
integral += error * KI;
integral = (integral > INT_MAX) ? INT_MAX : (integral < -INT_MAX) ? -INT_MAX : integral;
float diff = (prev_error - error) * KD;
prev_error = error;
return (error * KP) + integral + diff;

}

int16_t pid_lol_3(int16_t setpt, int16_t curr_pt){
static float integral;
static float prev_error;
float error = setpt - curr_pt;
integral += error * KI;
integral = (integral > INT_MAX) ? INT_MAX : (integral < -INT_MAX) ? -INT_MAX : integral;
float diff = (prev_error - error) * KD;
prev_error = error;
return (error * KP) + integral + diff;

}

int16_t pid_lol_4(int16_t setpt, int16_t curr_pt){
static float integral;
static float prev_error;
float error = setpt - curr_pt;
integral += error * KI;
integral = (integral > INT_MAX) ? INT_MAX : (integral < -INT_MAX) ? -INT_MAX : integral;
float diff = (prev_error - error) * KD;
prev_error = error;
return (error * KP) + integral + diff;

}

#define SPEED 3501
/* USER CODE END 0 */

/**
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* @brief The application entry point.
* @retval int
*/

int main(void)
{
/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Configuration--------------------------------------------------------*/

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */
SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_CAN1_Init();
/* USER CODE BEGIN 2 */
setup_can();

//uint32_t last_button_time = HAL_GetTick();
//int16_t spd = 1;
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{

ctrl_motor(pid_lol(-SPEED,motor_rpm1) , pid_lol_2(SPEED,motor_rpm2)
, pid_lol_3(-SPEED,motor_rpm3), pid_lol_4(SPEED,motor_rpm4));

//ctrl_motor(pid_lol(SPEED,motor_rpm1) , pid_lol(SPEED,motor_rpm2));
//ctrl_motor(SPEED);
HAL_Delay(1);

/*
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == 0){
if (HAL_GetTick() - last_button_time > 500){
spd = (spd == 1) ? 0 : (spd== 0) ? -1 : (spd == -1) ? 1 : 0;
last_button_time = HAL_GetTick();

}
}
*/

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

}

/**
* @brief System Clock Configuration
* @retval None
*/

void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 6;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
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if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();

}

/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();

}
}

/**
* @brief CAN1 Initialization Function
* @param None
* @retval None
*/

static void MX_CAN1_Init(void)
{

/* USER CODE BEGIN CAN1_Init 0 */

/* USER CODE END CAN1_Init 0 */

/* USER CODE BEGIN CAN1_Init 1 */

/* USER CODE END CAN1_Init 1 */
hcan1.Instance = CAN1;
hcan1.Init.Prescaler = 3;
hcan1.Init.Mode = CAN_MODE_NORMAL;
hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan1.Init.TimeSeg1 = CAN_BS1_9TQ;
hcan1.Init.TimeSeg2 = CAN_BS2_4TQ;
hcan1.Init.TimeTriggeredMode = DISABLE;
hcan1.Init.AutoBusOff = DISABLE;
hcan1.Init.AutoWakeUp = DISABLE;
hcan1.Init.AutoRetransmission = DISABLE;
hcan1.Init.ReceiveFifoLocked = DISABLE;
hcan1.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan1) != HAL_OK)
{
Error_Handler();

}
/* USER CODE BEGIN CAN1_Init 2 */

/* USER CODE END CAN1_Init 2 */

}

/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/

static void MX_GPIO_Init(void)
{

/* GPIO Ports Clock Enable */

__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/

void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */

}
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#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/

void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */

}
#endif /* USE_FULL_ASSERT */

Appendix I: Dev-C (STM32) Code for Spinning Flywheels

import numpy as np
import time
from picamera2 import Picamera2
from picamera2.encoders import H264Encoder
from picamera2.outputs import FfmpegOutput
from libcamera import controls
import RPi.GPIO as GPIO
 
# Color Tracking Thresholds (R, G, B) - need to be changed based on enviroment
LOWER_THRESHOLD = np.array([0, 100, 0]) # Lower green threshold
UPPER_THRESHOLD = np.array([100, 255, 100]) # Upper green threshold
 
# Set up camera
CAPTURE_SIZE = (640, 480)
picam2 = Picamera2()
video_config = picam2.create_video_configuration(main={"size": CAPTURE_SIZE, "format": "RGB8
# 24-bit color (8 bits per channel)
picam2.configure(video_config)
 
# Enable auto exposure and auto white balance
picam2.set_controls({"AeEnable": True, "AwbEnable": True})
encoder = H264Encoder(bitrate=10000000) # 10 Mbps for standard recording
output = FfmpegOutput('test.mp4')
 
picam2.start_recording(encoder, output)
print("Warming up the camera...")
time.sleep(2)
 
#Servo Motor Control
# Set up
GPIO.setmode(GPIO.BCM)
SERVO_PIN = 12
 
# Setup pin
GPIO.setup(SERVO_PIN, GPIO.OUT)
pwm = GPIO.PWM(SERVO_PIN, 50) # 50Hz (20ms) for servos - industry standard
pwm.start(0)
 
max_duty = 10; # fully extend - ~9mm
min_duty = 4; # fully retracted - 0mm
# the actual relationship between change in duty cycle and length is not linear,
# average changeLength per changeDuty is 1.5mm
 
def test_duty_cycle(duty):

GPIO.output(SERVO_PIN, True)
pwm.ChangeDutyCycle(duty)
time.sleep(0.2) # Can shorten in real competition

 
 
"""
Detect and analyze colored regions in the image.
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Args:
img (numpy.ndarray): Input RGB image
lower_thresh (numpy.ndarray): Lower RGB threshold values
upper_thresh (numpy.ndarray): Upper RGB threshold values
min_area (int): Minimum pixel area to be considered a valid blob

Returns:
list: List of tuples (x, y, w, h, cx, cy) for each detected blob where:

x, y: Top-left corner coordinates
w, h: Width and height of bounding box
cx, cy: Center coordinates of the blob

"""
def find_blobs(img, lower_thresh, upper_thresh, min_area=100):

# Create a binary mask using the color thresholds
mask = np.all((img >= lower_thresh) & (img <= upper_thresh), axis=2)

# Find connected components (blobs)
labeled, num_labels = np.zeros_like(mask), 0
neighbors = [(0,1), (0,-1), (1,0), (-1,0)]

blobs = []
for i in range(mask.shape[0]):

for j in range(mask.shape[1]):
if mask[i, j] and not labeled[i, j]:

num_labels += 1
stack, area = [(i, j)], 0
min_x, min_y, max_x, max_y = j, i, j, i

while stack:
y, x = stack.pop()

if 0 <= y < mask.shape[0] and 0 <= x < mask.shape[1] and mask[y, x] an
labeled[y, x]:

labeled[y, x] = num_labels
area += 1
min_x, max_x = min(min_x, x), max(max_x, x)
min_y, max_y = min(min_y, y), max(max_y, y)
stack.extend((y+dy, x+dx) for dy, dx in neighbors)

if area >= min_area:
cx = (min_x + max_x) // 2
cy = (min_y + max_y) // 2
blobs.append((min_x, min_y, max_x-min_x, max_y-min_y, cx, cy))

return blobs
 
 
print("Starting color tracking and video recording. Press Ctrl+C to quit.")
start_time = time.time()
try:

while True:
frame = picam2.capture_array()
blobs = find_blobs(frame, LOWER_THRESHOLD, UPPER_THRESHOLD)

if blobs:
print("\nDetected blobs:")
for i, blob in enumerate(blobs, 1):

x, y, w, h, cx, cy = blob
print(f"Blob {i}: Center ({cx}, {cy}), Size {w}x{h}")

largest_blob = max(blobs, key=lambda b: b[2] * b[3])
x, y, w, h, cx, cy = largest_blob # Correctly unpack all values
print(f"Largest Blob: Center ({cx}, {cy}), Size {w}x{h}")

# Servo control with more precise positioning
if cx > 450:

print("Target is at the right, servo move up")
test_duty_cycle(max_duty-2)

elif cx < 150:
print("Target is at the left, servo move down")
test_duty_cycle(min_duty)

else:

93



print("Target is at center, no need to change")
else:

print("No blobs detected", end='\r')

if time.time() - start_time > 60: # Stop after 60 seconds
break

time.sleep(2) # Delay to reduce CPU usage
 
except KeyboardInterrupt:

print("\nInterrupted by user. Exiting...")
 
finally:

picam2.stop_recording()
pwm.stop()
GPIO.cleanup()
print("Video recording stopped.")

Appendix J: Vision system code (final choice)

import sympy as sp

# Define symbolic variables

v0, theta = sp.symbols('v0 theta') # Initial speed and launch angle

m, g = sp.symbols('m g') # Mass and gravity

L, D = sp.symbols('L D') # Lift and drag forces

t = sp.symbols('t') # Time variable

# Compute accelerations

ax = -D / m

ay = -g + L / m

# Initial velocity components

v0x = v0 * sp.cos(theta)

v0y = v0 * sp.sin(theta)

# Time of flight (t_total) when vertical displacement is zero

# Equation: y = v0y * t_total + 0.5 * ay * t_total^2 = 0

# Solve for t_total (excluding t=0)

t_total = (-2 * v0y) / ay

# Horizontal and vertical positions as functions of time

x_t = v0x * t + 0.5 * ax * t**2

y_t = v0y * t + 0.5 * ay * t**2

# Simplify expressions

x_t_simplified = sp.simplify(x_t)

y_t_simplified = sp.simplify(y_t)

# Now, define numerical values for the parameters

numerical_values = {

m: 0.11, # Mass in kg

g: 9.8, # Gravity in m/s^2

L: 0.003, # Lift force in N

D: 0.184, # Drag force in N

theta: sp.rad(47), # Convert 47 degrees to radians
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}

# Substitute numerical values into accelerations and initial velocities

ax_num = ax.subs(numerical_values)

ay_num = ay.subs(numerical_values)

v0x_num = v0x.subs(numerical_values)

v0y_num = v0y.subs(numerical_values)

t_total_num = t_total.subs(numerical_values)

# Create numerical functions for positions

x_t_func = sp.lambdify((v0, t), x_t.subs(numerical_values), modules='numpy')

y_t_func = sp.lambdify((v0, t), y_t.subs(numerical_values), modules='numpy')

# Define the initial speed (from previous calculation)

v0_specific = 16.5 # Initial speed in m/s

# Compute time values from 0 to t_total_num

import numpy as np

import matplotlib.pyplot as plt

# Evaluate t_total_num numerically

t_total_specific = t_total_num.subs(v0, v0_specific)

t_total_specific = float(t_total_specific)

# Generate time values

t_values = np.linspace(0, t_total_specific, 500)

# Compute x and y positions over time

x_values = x_t_func(v0_specific, t_values)

y_values = y_t_func(v0_specific, t_values)

# Plot the trajectory

plt.figure(figsize=(8, 6))

plt.plot(x_values, y_values, label='Projectile Trajectory')

plt.title('Projectile Motion with Lift and Drag')

plt.xlabel('Horizontal Distance (m)')

plt.ylabel('Vertical Height (m)')

plt.legend()

plt.grid(True)

plt.show()

# Plot distance to initial speed

# Plot Range vs Initial Speed

plt.plot(v0_values, R_values)

plt.title('Distance Traveled vs Initial Speed')

plt.xlabel('Initial Speed (m/s)')

plt.ylabel('Distance Traveled (m)')

plt.grid(True)

plt.show()

# Additionally, display the symbolic expression for Range (optional)
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R = x_t.subs(t, t_total)

R_simplified = sp.simplify(R)

print("Symbolic expression for Range (R):")

sp.pprint(R_simplified)

# Calculate the distance traveled at the specific initial speed

R_numeric = R_simplified.subs(numerical_values).subs(v0, v0_specific)

distance = float(R_numeric)

print(f"\nDistance traveled at initial speed {v0_specific} m/s: {distance:.2f} meters")

Appendix K: General Simulation for Launch

import sympy as sp

import numpy as np

import matplotlib.pyplot as plt

# Define symbolic variables

v0, theta = sp.symbols('v0 theta') # Initial speed and launch angle

m, g = sp.symbols('m g') # Mass and gravity

L, D = sp.symbols('L D') # Lift and drag forces

t = sp.symbols('t') # Time variable

# Compute accelerations

ax = -D / m

ay = -g + L / m

# Initial velocity components

v0x = v0 * sp.cos(theta)

v0y = v0 * sp.sin(theta)

# Time of flight (t_total) when vertical displacement is zero

# Equation: y = v0y * t_total + 0.5 * ay * t_total^2 = 0

# Solve for t_total (excluding t=0)

t_total = (-2 * v0y) / ay

# Horizontal distance (Range)

R = v0x * t_total + 0.5 * ax * t_total**2

R_simplified = sp.simplify(R)

# Define numerical values for the parameters (excluding mass)

numerical_values = {

g: 9.8, # Gravity in m/s^2

L: 0.003, # Lift force in N

D: 0.184, # Drag force in N

theta: np.deg2rad(47), # Convert 47 degrees to radians

v0: 16.5, # Initial speed in m/s (from previous calculation)

}

# Create a function to compute distance as a function of mass

m_values = np.linspace(0.01, 0.5, 500) # Mass values from 0.01 kg to 0.5 kg

distance_values = []
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for mass in m_values:

# Update mass in numerical values

numerical_values[m] = mass

# Substitute numerical values into R_simplified

R_numeric = R_simplified.subs(numerical_values)

# Evaluate R_numeric

distance = float(R_numeric)

distance_values.append(distance)

# Plot Distance Traveled vs Mass

plt.figure(figsize=(8, 6))

plt.plot(m_values, distance_values)

plt.title('Distance Traveled vs Mass')

plt.xlabel('Mass (kg)')

plt.ylabel('Distance Traveled (m)')

plt.grid(True)

plt.show()

Appendix L: Simulation for Distance Travelled against Mass
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Appendix M: Overall Bill of Materials
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